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Abstract. It is known that for a sequence of independent and identically
distributed random variables (Xn) the regular variation condition is equivalent

to weak convergence of partial maximaMn = max{X1, . . . , Xn}, appropriately
scaled. A functional version of this is known to be true as well, the limit

process being an extremal process, and the convergence takes place in the space

of càdlàg functions endowed with the Skorohod J1 topology. We first show
that weak convergence of partial maxima Mn holds also for a class of weakly

dependent sequences under the joint regular variation condition. Then using

this result we obtain a corresponding functional version for the processes of

partial maxima Mn(t) =
∨bntc

i=1 Xi, t ∈ [0, 1], but with respect to the Skorohod
M1 topology, which is weaker than the more usual J1 topology. We also show

that the M1 convergence generally can not be replaced by the J1 convergence.

Applications of our main results to moving maxima, squared GARCH and
ARMAX processes are also given.

1. Introduction

Let (Xi) be a strictly stationary sequence of nonnegative random variables and
denote by Mn = max{Xi : i = 1, . . . , n}, n ≥ 1, its accompanying sequence of
partial maxima. It is well known that in the i.i.d. case weak convergence of Mn

is equivalent to the regular variation property of X1. More precisely, let (an) be a
sequence of positive real numbers such that

nP(X1 > an)→ 1 as n→∞, (1.1)

and µ a measure of the form

µ(dx) = αx−α−11(0,∞)(x) dx

for some α > 0. Then

nP
(X1

an
∈ ·
)

v−→ µ( · ) (1.2)

is equivalent to
Mn

an

d−→ Y0,

where Y0 is a random variable with Fréchet distribution

P(Y0 ≤ x) = e−µ((x,∞)) = e−x
−α
, x ≥ 0
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(see for example Resnick [24], Proposition 7.1). The arrow ”
v−→ ” in (1.2) denotes

vague convergence of measures on E = (0,∞]. The regular variation property (1.2)
is equivalent to

P(X1 > x) = x−αL(x), x > 0,

where L( · ) is a slowly varying function at ∞.
In the i.i.d. case the regular variation property (1.2) is also equivalent to the

functional convergence of stochastic processes of partial maxima of (Xn), i.e.

Mn( · ) =

bn·c∨
i=1

Xi

an

d−→ Y0( · ) (1.3)

in D[0, 1], the space of real-valued càdlàg functions on [0, 1], with the Skorohod J1

topology, where Y0( · ) is an extremal process with exponent measure µ, therefore
with marginal distributions

P(Y0(t) ≤ x) = e−tµ((x,∞)) = e−tx
−α
, x ≥ 0, t ∈ [0, 1].

This result was proved by Lamperti [16] (see also Resnick [24], Proposition 7.2).
For convenience we can put Mn(t) = X1/an (or Mn(t) = 0) for t ∈ [0, 1/n). Weiss-
man [27] studied generalizations of this result to random variables which need not
be identically distributed. As for the dependent case, Adler [1] obtained J1 extremal
functional convergence with the weak dependence condition similar to ”asymptotic
independence” condition introduced by Leadbetter [17] (see also Leadbetter [18]).
J1 functional convergence of sample extremal processes of moving averages was
obtained by Davis and Resnick [9] with the noise having regularly varying tail
probabilities, and by Jordanova [14] with the noise in the Weibull max-domain of
attraction. In the recent years different functional limit theorems for extremal pro-
cesses subordinated to random time were obtained, see for instance Silvestrov and
Teugels [25]; Meerschaert and Stoev [19].

In this paper, under the properties of weak dependence and joint regular vari-
ation with index α ∈ (0,∞) for the sequence (Xn), we investigate the asymptotic
distributional behavior of extremes Mn and processes Mn( · ). Since we study ex-
tremes of random processes, nonnegativity of random variables Xn in reality is not
a restrictive assumption. First, we introduce the essential ingredients about regular
variation and weak dependence in Section 2. In Section 3 we prove the so called
timeless result on weak convergence of scaled extremes Mn, based on a point process
convergence obtained by Davis and Hsing [7]. Using this result and a limit theorem
derived by Basrak et al. [5] for a certain time-space point processes, in Section 4
we prove a functional limit theorem for processes of partial maxima Mn( · ) in the
space D[0, 1] endowed with the Skorohod M1 topology, which is weaker than the
frequently used J1 topology. The used methods are partly based on the work of
Basrak et al. [5] for partial sums. Finally, in Section 5 we discuss several examples
of stationary sequences covered by our functional limit theorem, and show that the
M1 convergence, in general, can not be replaced by the J1 convergence.

2. Preliminaries on regular variation, point processes and weak
dependence

In this section we introduce the basic notions and results on regular variation
and point processes that will be required for the results in the following sections.
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Multivariate regular variation or regular variation on Rd+ = [0,∞)d for random

vectors is typically formulated in terms of vague convergence on Ed = [0,∞]d \{0}.
The topology on Ed is chosen so that a set B ⊆ Ed has compact closure if and
only if it is bounded away from zero, that is, if there exists u > 0 such that
B ⊆ Edu = {x ∈ Ed : ‖x‖ > u}. Here ‖ · ‖ denotes the max-norm on Rd+, i.e.

‖x‖ = max{xi : i = 1, . . . , d} where x = (x1, . . . , xd) ∈ Rd+.

The vector ξ with values in Rd+ is (multivariate) regularly varying with index

α > 0 if there exists a random vector Θ on the unit sphere Sd−1
+ = {x ∈ Rd+ : ‖x‖ =

1} in Rd+, such that for every u ∈ (0,∞)

P(‖ξ‖ > ux, ξ/‖ξ‖ ∈ · )
P(‖ξ‖ > x)

w−→ u−α P(Θ ∈ · ) (2.1)

as x → ∞, where the arrow ”
w−→” denotes weak convergence of finite measures.

Regular variation can be expressed in terms of vague convergence of measures on
B(Ed):

nP(a−1
n ξ ∈ · ) v−→ µ( · ),

where (an) is a sequence of positive real numbers tending to infinity and µ is a
non-null Radon measure on B(Ed).

We say that a strictly stationary R+–valued process (ξn) is jointly regularly
varying with index α ∈ (0,∞) if for any nonnegative integer k the k-dimensional
random vector ξ = (ξ1, . . . , ξk) is multivariate regularly varying with index α.

Theorem 2.1 in Basrak and Segers [6] provides a convenient characterization of
joint regular variation: it is necessary and sufficient that there exists a process
(Yn)n∈Z with P(Y0 > y) = y−α for y ≥ 1 such that as x→∞,(

(x−1ξn)n∈Z
∣∣ ξ0 > x

) fidi−−→ (Yn)n∈Z, (2.2)

where ”
fidi−−→” denotes convergence of finite-dimensional distributions. The process

(Yn) is called the tail process of (ξn).
Let (Xi) be a strictly stationary sequence of nonnegative random variables and

assume it is jointly regularly varying with index α ∈ (0,∞). The property of
joint regular variation is a corner stone in obtaining the weak convergence of point
processes Nn given by

Nn =

n∑
i=1

δXi/an , n ∈ N,

with an as in (1.1). These point processes play a fundamental role in obtaining the
limit theorem for scaled extremes Mn. The following time-space point processes

N∗n =

n∑
i=1

δ(i/n,Xi/an), n ∈ N, (2.3)

will be used in obtaining the functional limit theorem for processes of partial max-
ima Mn( · ).

To control the dependence in the sequence (Xn) we first have to assume that
clusters of large values of Xn do not last for too long.
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Condition 2.1. There exists a sequence of positive integers (rn) such that rn →∞
and rn/n→ 0 as n→∞ and such that for every u > 0,

lim
m→∞

lim sup
n→∞

P

(
max

m≤|i|≤rn
Xi > uan

∣∣∣∣X0 > uan

)
= 0. (2.4)

Under the finite-cluster Condition 2.1 the following value

θ = lim
r→∞

lim
x→∞

P
(
Mr ≤ x

∣∣X0 > x
)

(2.5)

is strictly positive, and it is equal to the extremal index of the sequence (Xn) (see
Basrak and Segers [6]). The extremal index can be interpreted as the reciprocal
mean cluster size of large exceedances (cf. Hsing et al. [13]). Clustering of extreme
values occurs when θ < 1.

The weak dependence condition appropriate for our considerations is the mixing
condition called A′(an) which is slightly stronger than the condition A(an) intro-
duced in Davis and Hsing [7]. Condition A′(an) is implied by the strong mixing
property, see Krizmani’c [15]. Recall that a sequence of random variables (ξn) is
strongly mixing if α(n)→ 0 as n→∞, where

α(n) = sup{|P(A ∩B)− P(A) P(B)| : A ∈ Fj1 , B ∈ F∞j+n, j = 1, 2, . . .}

and F lk = σ({ξi : k ≤ i ≤ l}) for 1 ≤ k ≤ l ≤ ∞.

Condition 2.2 (A′(an)). There exists a sequence of positive integers (rn) such that
rn →∞ and rn/n→ 0 as n→∞ and such that for every nonnegative continuous
function f on [0, 1]× E with compact support, denoting kn = bn/rnc, as n→∞,

E

[
exp

{
−

n∑
i=1

f

(
i

n
,
Xi

an

)}]
−

kn∏
k=1

E

[
exp

{
−

rn∑
i=1

f

(
krn
n
,
Xi

an

)}]
→ 0. (2.6)

Under joint regular variation and Conditions 2.1 and 2.2, by Theorem 2.7 in
Davis and Hsing [7] we obtain that the point processes Nn, n ∈ N, converge in
distribution to some N , which by Theorem 2.3 and Corollary 2.4 in Davis and
Hsing [7] has the following cluster representation

N
d
=
∑
i

∑
j

δPiQij , (2.7)

where
∑∞
i=1 δPi is a Poisson process with intensity measure ν given by ν(dy) =

θαy−α−11(0,∞)(y) dy, and
∑∞
j=1 δQij , i ≥ 1, are i.i.d. point processes on [0, 1] whose

points satisfy supj Qij = 1, and all point processes are mutually independent. The

distribution of the point process
∑∞
j=1 δQij is described in Davis and Hsing [7].

Conditions 2.1 and 2.2, by Theorem 2.3 in Basrak et al. [5], also imply con-
vergence in distribution of the point process N∗n on the set [0, 1] × Eu for every
u ∈ (0,∞), where Eu = (u,∞]. More precisely, under the above conditions, for
every u ∈ (0,∞), as n→∞,

N∗n

∣∣∣∣
[0,1]×Eu

d−→ N (u) =
∑
i

∑
j

δ
(T

(u)
i ,uZij)

∣∣∣∣
[0,1]×Eu

(2.8)

in [0, 1]×Eu, where
∑
i δT (u)

i
is a homogeneous Poisson process on [0, 1] with inten-

sity θu−α, and (
∑
j δZij )i is an i.i.d. sequence of point processes in E, independent
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of
∑
i δT (u)

i
, and with common distribution equal to the distribution of(∑

n∈Z
δYn

∣∣∣∣ sup
i≤−1

Yi ≤ 1

)
,

where (Yn) is the tail process of the sequence (Xn).
For a detailed discussion on joint regular variation and dependence conditions

2.1 and 2.2 we refer to Basrak et al. [5], Section 3.4.

3. Weak convergence of partial maxima Mn

In this section we establish convergence of the partial maxima Mn for a class of
weakly dependent sequences. Precisely, let (Xn) be a strictly stationary sequence
of nonnegative random variables, jointly regularly varying with index α ∈ (0,∞)
and assume Conditions 2.1 and 2.2 hold. Then by (2.7) it holds that, as n→∞,

Nn =

n∑
i=1

δXi/an
d−→ N =

∑
i

∑
j

δPiQij ,

where (an) is chosen as in (1.1). Denote by Mp(E) the space of Radon point
measures on E equipped with the vague topology. Recall Mn =

∨n
i=1Xi.

Theorem 3.1. Let (Xn) be a strictly stationary sequence of nonnegative random
variables, jointly regularly varying with index α ∈ (0,∞). Suppose that Condi-
tions 2.1 and 2.2 hold. Then, as n→∞,

Mn

an

d−→M,

where the limit M is a Fréchet random variable with

P(M ≤ x) = e−θx
−α
, x > 0.

Proof. Define M =
∨∞
i=1

∨∞
j=1 PiQij , and let ε > 0 be arbitrary. The mapping

Tε : Mp(E)→ R defined by

Tε

( ∞∑
i=1

δxi

)
=

∞∨
i=1

xi1{xi∈[ε,∞)}

is continuous on the set Λε = {η ∈ Mp(E) : η({ε}) = 0} (cf. Resnick [23], page
214). Since N has no fixed atoms (see Lemma 2.1 in Davis and Hsing [7]), i.e.
P(N ∈ Λε) = 1, using the continuous mapping theorem we obtain

Mn[ε,∞) = Tε(Nn)
d−→ Tε(N) = M [ε,∞) as n→∞, (3.1)

with the notation

MnB = a−1
n

n∨
i=1

Xi1{a−1
n Xi∈B},

and

MB =

∞∨
i=1

∞∨
j=1

PiQij1{PiQij∈B}

for any Borel set B in R. Obviously

M [ε,∞)→M(0,∞) = M (3.2)
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almost surely as ε→ 0. If we show that

lim
ε→0

lim sup
n→∞

P(|Mn[ε,∞)−Mn(0,∞)| > δ) = 0 (3.3)

for any δ > 0, then by Theorem 3.5 in Resnick [24] we will have Mn(0,∞)
d−→

M(0,∞), i.e. a−1
n Mn

d−→M as n→∞.
Since for arbitrary real numbers x1, . . . , xn, y1, . . . , yn the following inequality∣∣∣ n∨

i=1

xi −
n∨
i=1

yi

∣∣∣ ≤ n∨
i=1

|xi − yi| (3.4)

holds, note that

|Mn[ε,∞)−Mn(0,∞)| ≤Mn(0, ε).

Take an arbitrary s > α. Then using stationarity and Markov’s inequality we get
the bound

P(Mn(0, ε) > δ) ≤ nP
(X1

an
1{X1<εan} > δ

)
≤ n

δsasn
E(Xs

11{X1<εan})

=
εs

δs
· nP(X1 > an) · P(X1 > εan)

P(X1 > an)
·

E(Xs
11{X1<εan})

εsasn P(X1 > εan)
. (3.5)

Since the distribution of X1 is regularly varying with index α, it follows immediately
that

P(X1 > εan)

P(X1 > an)
→ ε−α

as n→∞. By Karamata’s theorem

lim
n→∞

E(Xs
1 1{X1<εan})

εsasn P(X1 > εan)
=

α

s− α
.

Thus from (3.5), taking into account relation (1.1), we get

lim sup
n→∞

P(Mn(0, ε) > δ) ≤ δ−s α

s− α
εs−α.

Letting ε→ 0, since s− α > 0, we finally obtain

lim
ε→0

lim sup
n→∞

P(Mn(0, ε) > δ) = 0,

and relation (3.3) holds. Therefore a−1
n Mn

d−→M as n→∞.
From the representation in (2.7) and the fact that supj Qij = 1 we obtain the

distribution of the limit M ,

P(M ≤ x) = P
( ∞∨
i=1

Pi ≤ x
)

= P
(∑

i

δPi(x,∞) = 0
)

= e−ν(x,∞) = e−θx
−α

for x > 0. �
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4. Functional convergence of partial maxima processes Mn( · )

In this section we show the convergence of the partial maxima processes Mn( · ) to
an extremal process in the space D[0, 1] equipped with the Skorohod M1 topology.
Similar to the case of partial sum processes in Basrak et al. [5] we first represent
the partial maxima process Mn( · ) as the image of the time-space point process N∗n
under a certain maximum functional. Then, using certain continuity properties of
this functional, the continuous mapping theorem and the standard ”finite dimen-
sional convergence plus tightness” procedure we transfer the weak convergence of
N∗n in (2.8) to weak convergence of Mn( · ).

Recall the definition of the M1 topology. For x ∈ D[0, 1] the completed graph of
x is the set

Γx = {(t, z) ∈ [0, 1]× R : z = λx(t−) + (1− λ)x(t) for some λ ∈ [0, 1]},

where x(t−) is the left limit of x at t. Besides the points of the graph {(t, x(t)) :
t ∈ [0, 1]}, the completed graph of x also contains the vertical line segments joining
(t, x(t)) and (t, x(t−)) for all discontinuity points t of x. We define an order on
the graph Γx by saying that (t1, z1) ≤ (t2, z2) if either (i) t1 < t2 or (ii) t1 = t2
and |x(t1−) − z1| ≤ |x(t2−) − z2|. A parametric representation of the completed
graph Γx is a continuous nondecreasing function (r, u) mapping [0, 1] onto Γx, with
r being the time component and u being the spatial component. Let Π(x) denote
the set of parametric representations of the graph Γx. For x1, x2 ∈ D[0, 1] define

dM1
(x1, x2) = inf{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri, ui) ∈ Π(xi), i = 1, 2},

where ‖x‖[0,1] = sup{|x(t)| : t ∈ [0, 1]} and a ∨ b = max{a, b}. dM1 is a metric
on D[0, 1], and the induced topology is called the Skorohod M1 topology. This
topology is weaker than the more frequently used Skorohod J1 topology. For more
discussion of the M1 topology we refer to Whitt [28], sections 12.3-12.5.

Fix 0 < v < u <∞. Define the maximum functional

φ(u) : Mp([0, 1]× Ev)→ D[0, 1]

by

φ(u)
(∑

i

δ(ti, xi)

)
(t) =

∨
ti≤t

xi 1{u<xi<∞}, t ∈ [0, 1],

where the supremum of an empty set may be taken, for convenience, to be 0.
Note that φ(u) is well defined because [0, 1] × Eu is a relatively compact subset of
[0, 1]× Ev. Indeed, for every η ∈Mp([0, 1]× Ev) it holds that η([0, 1]× Eu) < ∞,

and this immediately yields φ(u)(η) ∈ D[0, 1]. The space Mp([0, 1]× Ev) of Radon
point measures on [0, 1] × Ev is equipped with the vague topology and D[0, 1] is
equipped with the M1 topology. Let

Λ = {η ∈Mp([0, 1]× Ev) : η({0, 1} × Eu) = η([0, 1]× {u,∞}) = 0}.

Observe that elements of Λ are Radon point measures that have no atoms on the
border of [0, 1] × Eu. Then the point process N (v) defined in (2.8) almost surely
belongs to the set Λ, see Lemma 3.1 in Basrak et al. [5]. Now we will show that
φ(u) is continuous on the set Λ.

Lemma 4.1. The maximum functional φ(u) : Mp([0, 1] × Ev) → D[0, 1] is contin-
uous on the set Λ, when D[0, 1] is endowed with the Skorohod M1 topology.
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Proof. Take an arbitrary η ∈ Λ and suppose that ηn
v−→ η in Mp([0, 1] × Ev). We

will show that φ(u)(ηn) → φ(u)(η) in D[0, 1] according to the M1 topology. Since
the set [0, 1] × Eu is relatively compact in [0, 1] × Ev, there exists a nonnegative
integer k = k(η) such that

η([0, 1]× Eu) = k <∞.
By assumption, η does not have any atoms on the border of the set [0, 1] × Eu.
Hence, by Lemma 7.1 in Resnick [24], there exists a positive integer n0 such that
for all n ≥ n0 it holds that

ηn([0, 1]× Eu) = k.

If k = 0 there is nothing to prove, so assume k ≥ 1, and let (ti, xi) for i = 1, . . . , k

be the atoms of η in [0, 1]× Eu. By the same lemma, the k atoms (t
(n)
i , x

(n)
i ) of ηn

in [0, 1]×Eu (for n ≥ n0) can be labelled in such a way that for every i ∈ {1, . . . , k}
we have

(t
(n)
i , x

(n)
i )→ (ti, xi) as n→∞.

In particular, for any δ > 0 we can find a positive integer nδ ≥ n0 such that for all
n ≥ nδ,

|t(n)
i − ti| < δ and |x(n)

i − xi| < δ for i = 1, . . . , k. (4.1)

Let the sequence
0 < τ1 < τ2 < . . . < τp < 1

be such that the sets {τ1, . . . , τp} and {t1, . . . , tk} coincide. Since η can have several
atoms with the same time coordinate, it always holds that p ≤ k. Put τ0 = 0,
τp+1 = 1, and take

0 < r <
1

2
min

0≤i≤p
|τi+1 − τi|.

For any t ∈ [0, 1] \ {τ1, . . . , τp} we can find δ ∈ (0, u) such that

δ < r and δ < min
1≤i≤p

|t− τi|.

Then relation (4.1), for n ≥ nδ, implies that t
(n)
i ≤ t is equivalent to ti ≤ t, and we

obtain

|φ(u)(ηn)(t)− φ(u)(η)(t)| =
∣∣∣∣ ∨
t
(n)
i ≤t

x
(n)
i −

∨
ti≤t

xi

∣∣∣∣ ≤ ∨
ti≤t

|x(n)
i − xi| < δ.

Therefore
lim
n→∞

|φ(u)(ηn)(t)− φ(u)(η)(t)| < δ,

and if we let δ → 0, it follows that φ(u)(ηn)(t)→ φ(u)(η)(t) as n→∞. Note that the
functions φ(u)(η) and φ(u)(ηn) (n ≥ nδ) are monotone. Since, by Corollary 12.5.1
in Whitt [28], M1 convergence for monotone functions is equivalent to pointwise
convergence in a dense subset of points plus convergence at the endpoints, we obtain
that dM1(φ(u)(ηn), φ(u)(η))→ 0 as n→∞, i.e. φ(u) is continuous at η. �

In the sequel we will show that the functional φ(u) is not continuous on the set
Λ when D[0, 1] is endowed with the Skorohod J1 topology (see Remark 4.2).

The theorem below gives conditions under which the partial maxima processes
of a strictly stationary, jointly regularly varying sequence of nonnegative random
variables satisfies a functional limit theorem with an extremal process as a limit.
Extremal processes can be defined by Poisson processes in the following way. Let
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ξ =
∑
k δ(tk,jk) be a Poisson process on (0,∞)×E with mean measure λ×ν, where

λ is the Lebesgue measure. The extremal process M̃( · ) generated by ξ is defined
by

M̃(t) = sup{jk : tk ≤ t}, t > 0.

The distribution function of M̃(t) is of the form

P(M̃(t) ≤ x) = e−tν(x,∞)

for t > 0 (cf. Resnick [22]). The measure ν is called the exponent measure.
The convergence in the theorem takes place in the space D[0, 1] endowed with the

Skorohod M1 topology. In the proof of the theorem we will need a characterization
of M1 convergence for random processes which is due to Skorohod. Put

M(x1, x2, x3) =

{
0, if x2 ∈ [x1, x3],
min{|x2 − x1|, |x3 − x2|}, otherwise,

(note that M(x1, x2, x3) is the distance from x2 to [x1, x3]) and introduce the M1

oscillation ωδ(x) of a function x ∈ D[0, 1] by

ωδ(x) = sup
t1 ≤ t ≤ t2

0 ≤ t2 − t1 ≤ δ

M(x(t1), x(t), x(t2)),

for δ > 0. Then the following corollary of Theorems 3.2.1 and 3.2.2 in Skorohod [26]
holds.

Proposition 4.2. Let Zn( · ) be processes in D[0, 1] whose finite dimensional dis-
tributions converge to those of a process Z( · ) which is a.s. continuous at t = 0 and
t = 1. Then Zn( · ) converges in distribution to Z( · ) in D[0, 1] with respect to the
Skorohod M1 topology if and only if for every ε > 0,

lim
δ→0

lim sup
n→∞

P(ωδ(Zn( · )) > ε) = 0. (4.2)

Remark 4.1. The statement of Proposition 4.2 remains valid if the M1 topology
is replaced by the J1 topology, and the M1 oscillation ωδ( · ) is replaced by the J1

oscillation ω′δ( · ) defined by

ω′δ(x) = sup
t1 ≤ t ≤ t2

0 ≤ t2 − t1 ≤ δ

min{|x(t)− x(t1)|, |x(t2)− x(t)|},

for x ∈ D[0, 1] and δ > 0 (see Skorohod [26]).

Theorem 4.3. Let (Xn) be a strictly stationary sequence of nonnegative random
variables, jointly regularly varying with index α ∈ (0,∞). Suppose that Conditions
2.1 and 2.2 hold. Then the partial maxima stochastic process

Mn(t) =

bntc∨
i=1

Xi

an
, t ∈ [0, 1],

satisfies

Mn( · ) d−→ M̃( · ), n→∞,
in D[0, 1] endowed with the M1 topology, where M̃( · ) is an extremal process with
exponent measure ν(x,∞) = θx−α, x > 0, with θ given by (2.5).
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Proof. Using the techniques from the proof of Theorem 3.4 in Basrak et al. [5] we
obtain that the point process

N̂ (u) =
∑
i

δ
(T

(u)
i ,u

∨
j Zij1{Zij>1})

,

is a Poisson process with mean measure λ× ν(u), where the measure ν(u) is defined
by

ν(u)(x,∞) = u−α P

(
u
∨
i≥0

Yi 1{Yi>1} > x, sup
i≤−1

Yi ≤ 1

)
, x > 0,

with (Yi) being the tail process of the sequence (Xi).
Consider now 0 < u < v and

φ(u)(N∗n | [0,1]×Eu)( · ) = φ(u)(N∗n | [0,1]×Ev )( · ) =
∨

i/n≤ ·

Xi

an
1{Xi

an
>u
},

which by Lemma 4.1 and the continuous mapping theorem converges in distribution
in D[0, 1] under the M1 metric to

φ(u)(N (v))( · ) = φ(u)(N (v) | [0,1]×Eu)( · ).

Since by the definition of the process N (u) in (2.8) it holds that N (u) d
= N (v)|[0,1]×Eu ,

the last expression above is equal in distribution to

φ(u)(N (u))( · ) =
∨

T
(u)
i ≤ ·

∨
j

uZij1{Zij>1}.

But since φ(u)(N (u)) = φ(u)(N̂ (u))
d
= φ(u)(Ñ (u)), where

Ñ (u) =
∑
i

δ
(Ti, K

(u)
i )

is a Poisson process (or Poisson random measure) with mean measure λ× ν(u), we
obtain

M (u)
n ( · ) :=

bn · c∨
i=1

Xi

an
1{Xi

an
>u
} d−→M (u)( · ) :=

∨
Ti≤ ·

K
(u)
i as n→∞, (4.3)

in D[0, 1] under the M1 metric. Note that the limiting process M (u)( · ) is an
extremal process with exponent measure ν(u), since

P(M (u)(t) ≤ x) = P(Ñ (u)((0, t]× (x,∞)) = 0) = e−tν
(u)(x,∞)

for t ∈ [0, 1] and x > 0.
Since the function π : D[0, 1]→ R defined by π(x) = x(1) is continuous (see The-

orem 12.5.1 (iv) in Whitt [28]), from (4.3) using the continuous mapping theorem,
we obtain

M (u)
n (1)

d−→M (u)(1) as n→∞. (4.4)

If we now apply the notation from the proof of Theorem 3.1, we see that M
(u)
n (1) =

Mn(u,∞). Therefore comparing (3.1) and (4.4) we conclude that M (u)(1)
d
=

M(u,∞). Further, from (3.2) it follows that M (u)(1)
d−→ M as u → 0. There-

fore taking into account the distribution of M we conclude that e−ν
(u)(x,∞) →
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e−ν(x,∞) for all x > 0 that are continuity points of the distribution of M , where
ν(dy) = θαy−α−11(0,∞)(y) dy. Hence

ν(u)(x,∞)→ ν(x,∞) as u→ 0, (4.5)

for every continuity point x of ν( ·,∞).
Now we show that the finite dimensional distributions of M (u)( · ) converge, as u

tends to zero, to the finite dimensional distributions of an extremal process M̃( · )
generated by a Poisson process

∑
i δ(Ti,Ki) with mean measure λ × ν, i.e. M̃(t) =∨

Ti≤tKi, t ∈ [0, 1]. Since M (u)( · ) is an extremal process, its finite dimensional
distributions are of the form

P(M (u)(t1) ≤ x1, . . . ,M
(u)(tk) ≤ xk)

= e−t1ν
(u)(

∧k
i=1 xi,∞) · e−(t2−t1)ν(u)(

∧k
i=2 xi,∞) · . . . · e−(tk−tk−1)ν(u)(xk,∞),

for 0 ≤ t1 < t2 < . . . < tk ≤ 1 and positive real numbers x1, . . . , xk (see Resnick [22],
Section 2.3). Letting u → 0 and using (4.5) we immediately obtain that the right
hand side in the last equation above converges (in the continuity points x1, . . . , xk
of ν( ·,∞)) to

e−t1(
∧k
i=1 xi,∞) · e−(t2−t1)ν(

∧k
i=2 xi,∞) · . . . · e−(tk−tk−1)ν(xk,∞).

But since this limit is in fact P(M̃(t1) ≤ x1, . . . , M̃(tk) ≤ xk), we conclude that
the finite dimensional distributions of M (u)( · ) converge to the finite dimensional

distributions of M̃( · ) as u→ 0.

Since M̃( · ) is constructed from a Poisson process, using its properties one can

easily obtain that M̃( · ) is a.s. continuous at t = 0 and t = 1. In order to obtain

M1 convergence of M (u)( · ) to M̃( · ) as u → 0, according to Proposition 4.2, we
need only to show (4.2), i.e

lim
δ→0

lim sup
u→0

P(ωδ(M
(u)( · )) > ε) = 0.

Note that since M (u)( · ) is increasing, for t1 ≤ t ≤ t2 it holds that M (u)(t1) ≤
M (u)(t) ≤ M (u)(t2), which implies M(M (u)(t1),M (u)(t),M (u)(t2)) = 0. Hence

ωδ(M
(u)) = 0, and (4.2) holds. Therefore M (u)( · ) d−→ M̃( · ) in D[0, 1] with the M1

topology.

So far we obtained M
(u)
n ( · ) d−→ M (u)( · ) as n → ∞, and M (u)( · ) d−→ M̃( · ) as

u→ 0. If we show

lim
u→0

lim sup
n→∞

P(dM1
(Mn( · ),M (u)

n ( · )) > ε) = 0,

for every ε > 0, then by Theorem 3.5 in Resnick [24] we will have, as n→∞,

Mn( · ) d−→ M̃( · )

in D[0, 1] with the M1 topology. Take an arbitrary (and fixed) ε > 0. Using the fact
that the Skorohod M1 metric on D[0, 1] is bounded above by the uniform metric
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on D[0, 1] and relation (3.4) we obtain

P(dM1
(Mn( · ),M (u)

n ( · )) > ε)

≤ P
(

sup
t∈[0,1]

|Mn(t)−M (u)
n (t)| > ε

)

= P

(
sup
t∈[0,1]

∣∣∣∣ bntc∨
j=1

Xj

an
−
bntc∨
j=1

Xj

an
1{Xj

an
>u
}∣∣∣∣ > ε

)

≤ P

(
sup
t∈[0,1]

∣∣∣∣ bntc∨
j=1

Xj

an
1{Xj

an
≤u
}∣∣∣∣ > ε

)

≤ P

( n∨
j=1

Xj

an
1{Xj

an
≤u
} > ε

)

Note that the last term above is equal to zero for u ∈ (0, ε). Hence

lim
u→0

lim sup
n→∞

P(dM1
(Mn( · ),M (u)

n ( · )) > ε) = 0,

and this concludes the proof. �

Remark 4.2. The M1 convergence in Theorem 4.3 in general can not be replaced
by the J1 convergence. This is shown in Example 5.1.

The problem in our proof if we consider the J1 topology is Lemma 4.1, which in
this case does not hold. To see this, fix u > 0 and define

ηn = δ( 1
2−

1
n ,2u) + δ( 1

2 ,3u) for n ≥ 3.

Then ηn
v−→ η, where

η = δ( 1
2 ,2u) + δ( 1

2 ,3u).

For tn = 1
2 −

1
n and every strictly increasing continuous function λ : [0, 1] → [0, 1]

such that λ(0) = 0 and λ(1) = 1, we have

φ(u)(ηn)(tn) = 2u and φ(u)(η)(λ(tn)) ∈ {0, 3u}.
Therefore for every n ≥ 3,

‖φ(u)(ηn)− φ(u)(η ◦ λ)‖[0,1] ≥ |φ(u)(ηn)(tn)− φ(u)(η)(λ(tn))| ≥ u,
and by the definition of the J1 metric dJ1 (see for example Resnick [23], Section
4.4.1) we obtain

dJ1(φ(u)(ηn), φ(u)(η ◦ λ)) ≥ u,
which means that φ(u)(ηn) does not converge to φ(u)(η) in the J1 topology, i.e. the
maximum functional φ(u) is not continuous at η with respect to the Skorohod J1

topology. Since η ∈ Λ we conclude that φ(u) is not continuous on the set Λ.
In our case the J1 topology is inappropriate as the partial maxima process may

exhibit rapid successions of jumps within temporal clusters of large values, collaps-
ing in the limit to a single jump. In other words the J1 convergence could hold only
if extreme values do not cluster. Since our conditions do not prohibit clustering of
extremes, the J1 convergence fails to hold, and hence the weaker M1 topology has
to be used.
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Remark 4.3. Theorems 3.1 and 4.3 can be extended to real-valued random variables,
in the sense that convergence in distribution of a−1

n Mn and Mn( · ) can be derived
analogously with the use of absolute values of the variables Xi, Zij and Yi in
appropriate places. But with the methods used for positive random variables, one
can not obtain a explicit form for the distribution of the limits, i.e. the distribution

function of M and the exponent measure of M̃( · ).

5. Examples

We give three examples of time series that satisfy all conditions in Theorems 3.1
and 4.3, namely joint regular variation property and Conditions 2.1 and 2.2. Hence
for these processes we obtain convergence of partial maxima Mn and functional
convergence of partial maxima processes Mn( · ). We also identify the distribution

of the corresponding limits M and M̃( · ) by indicating explicitly the extremal index

θ. Recall P(M ≤ x) = e−θx
−α

and P(M̃(t) ≤ x) = e−tθx
−α

for x > 0 and t > 0.

Example 5.1. (Moving maxima) Consider the finite order moving maxima defined
by

Xn = max
i=0,...,m

{ciZn−i}, n ∈ Z,

where m ∈ N, c0, . . . , cm are nonnegative constants such that at least c0 and cm
are not equal to 0 and Zi, i ∈ Z, are i.i.d. unit Fréchet random variables, i.e.
P(Zi ≤ x) = e−1/x for x > 0. Hence Zi is regularly varying with index α = 1. Take
a sequence of positive real numbers (an) such that

nP(Z1 > an)→ 1 as n→∞.
Then every Xi is also regularly varying with index α = 1. Assume also (without
loss of generality) that

∑m
i=0 ci = 1. Then nP(X1 > an)→ 1 as n→∞. Since the

sequence (Xn) is m–dependent, it is also strongly mixing, and therefore the mixing
Condition 2.2 holds. By the same property, for s > m we have

P

(
max

s≤|i|≤rn
Xi > uan

∣∣∣∣X0 > uan

)
= P

(
max

s≤|i|≤rn
Xi > uan

)
≤ 2rn

n
· nP(X1 > uan).

Note that the expression on the right hand side in the above inequality converges
to 0 as n→∞, and hence Condition 2.1 also holds. By an application of Theorem
2.3 in Meinguet [20] we obtain that the sequence (Xn) is jointly regularly varying
with index α = 1. The extremal index of the sequence (Xn) is given by θ =
max0≤i≤m{ci} (see Ancona-Navarrete and Tawn [2] and Meinguet [20]).

In the rest of the example we show that the M1 convergence in Theorem 4.3
in general can not be replaced by the J1 convergence. We use, with appropriate
modifications, the procedure of Avram and Taqqu [3] in the proof of their Theorem
1. For simplicity take m = 2. Then we have Xn = max{c0Zn, c1Zn−1} and

Mn(t) =

bntc∨
i=1

Xi

an
, t ∈ [0, 1].

By Remark 4.1 it suffices to prove

lim
δ→0

lim sup
n→∞

P(ω′δ(Mn( · )) > ε) > 0 (5.1)
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for some ε > 0.
Assume c1 > c0. Let i′ = i′(n) be the index at which max1≤i≤n−1 Zi is obtained.

Fix ε > 0 and introduce the events

An,ε = {Zi′ > εan} =
{

max
1≤i≤n−1

Zi > εan

}
and

Bn,ε = {Zi′ > εan and ∃ l 6= 0,−i′ ≤ l ≤ 1, such that Zi′+l > λεan},

where λ = c0/(2c1). Using the facts that (Zi) is an i.i.d. sequence and nP(Z1 >
εan)→ 1/ε as n→∞ (which follows from the regular variation property of Z1) we
obtain

lim
n→∞

P(An,ε) = lim
n→∞

[1− (1− P(Z1 > εan)n−1] = 1− e−1/ε. (5.2)

Observe that

Bn,ε ⊆
n−1⋃
i=1

1⋃
l = −(n− 1)

l 6= 0

{Zi > εan, Zi+l > λεan}.

Then it holds that

P(Bn,ε) ≤ (n− 1)nP(Z1 > εan) P(Z1 > λεan)→ 1

λε2
(5.3)

as n→∞.
On the event An,ε \ Bn,ε one has Zi′+l ≤ λεan for every l 6= 0, −i′ ≤ l ≤ 1, so

that
i′−1∨
j=1

Xj

an
= max

{
c0

i′−1∨
j=1

Zj
an
, c1

i′−2∨
j=0

Zj
an

}
≤ c1λε =

c0ε

2

and

i′∨
j=1

Xj

an
= max

{ i′−1∨
j=1

Xj

an
,
Xi′

an

}
≥ Xi′

an
= max

{
c0
Zi′

an
, c1

Zi′−1

an

}
≥ c0

Zi′

an
≥ c0ε.

Therefore∣∣∣Mn

( i′
n

)
−Mn

( i′ − 1

n

)∣∣∣ =

∣∣∣∣ i′∨
j=1

Xj

an
−
i′−1∨
j=1

Xj

an

∣∣∣∣ ≥ c0ε− c0ε

2
=
c0ε

2
. (5.4)

On the event An,ε \Bn,ε one also have

i′∨
j=1

Xj

an
=
Xi′

an
= c0

Zi′

an

and
i′+1∨
j=1

Xj

an
≥ Xi′+1

an
= max

{
c0
Zi′+1

an
, c1

Zi′

an

}
≥ c1

Zi′

an
,
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which imply ∣∣∣Mn

( i′ + 1

n

)
−Mn

( i′
n

)∣∣∣ =

∣∣∣∣ i
′+1∨
j=1

Xj

an
−

i′∨
j=1

Xj

an

∣∣∣∣
≥ (c1 − c0)

Zi′

an
= (c1 − c0)ε. (5.5)

From (5.4) and (5.5) we obtain

ω′2/n(Mn( · )) ≥ min
{∣∣∣Mn

( i′
n

)
−Mn

( i′ − 1

n

)∣∣∣, ∣∣∣Mn

( i′ + 1

n

)
−Mn

( i′
n

)∣∣∣}
≥ ε min

{c0
2
, c1 − c0

}
> 0

on the event An,ε \Bn,ε. Therefore, since ω′δ( · ) is nondecreasing in δ, it holds that

lim inf
n→∞

P(An,ε \Bn,ε) ≤ lim inf
n→∞

P(ω′2/n(Mn( · )) ≥ ε min{c0/2, c1 − c0})

≤ lim
δ→0

lim sup
n→∞

P(ω′δ(Mn( · )) ≥ ε min{c0/2, c1 − c0}).

Hence if we prove lim infn→∞ P(An,ε \ Bn,ε) > 0 for some ε > 0, then (5.1) will

hold, and this will exclude the J1 convergence. Since x2(1−e−1/x) tends to infinity
as x→∞, we can find ε > 0 such that ε2(1− e−1/ε) > 1/λ, i.e.

1− e−1/ε >
1

λε2
.

Hence, taking into account relations (5.2) and (5.3) we obtain

lim
n→∞

P(An,ε) > lim sup
n→∞

P(Bn,ε),

and from this immediately follows

lim inf
n→∞

P(An,ε \Bn,ε) ≥ lim
n→∞

P(An,ε)− lim sup
n→∞

P(Bn,ε) > 0.

Therefore the J1 convergence does not hold.

Example 5.2. (squared GARCH process) We consider a stationary squared GARCH(1,1)
process (X2

n), where

Xn = σnZn,

with (Zn) being a sequence of i.i.d. random variables with E(Z1) = 0 and var(Z1) =
1, and

σ2
n = α0 + (α1Z

2
n−1 + β1)σ2

n−1, (5.6)

with positive parameters α1, β1 and α0. Assume that

−∞ ≤ E ln(α1Z
2
1 + β1) < 0.

Then there exists a strictly stationary solution to the stochastic recurrence equation
(5.6); see Goldie [12] and Mikosch and Stărică [21]. The process (Xn) is then strictly
stationary too.

Assume that Z1 is symmetric, has a positive Lebesgue density on R and there
exists α > 0 such that

E[(α1Z
2
1 + β1)α] = 1 and E[(α1Z

2
1 + β1)α ln(α1Z

2
1 + β1)] <∞.
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Then it is known that the processes (σ2
n) and (X2

n) are jointly regularly varying with
index α and strongly mixing with geometric rate (see Basrak et al. [4]; Mikosch and
Stărică [21]). Therefore the sequence (X2

n) satisfies Condition 2.2. Condition 2.1
for the sequence (X2

n) follows immediately from the results in Basrak et al. [4]. The
extremal index of the sequence (X2

n) is given by

θ = lim
k→∞

E

(
|Z1|2α − max

j=2,...,k+1

∣∣∣Z2
j

j∏
i=1

(α1Z
2
i−1 + β1)

∣∣∣α)
+

/
E |Z1|2α

(see Mikosch and Stărică [21]).

Example 5.3. (ARMAX process) The ARMAX process is defined by

Xn = max{cXn−1, Zn}, n ∈ Z, (5.7)

where 0 < c < 1 and (Zn) is a sequence of i.i.d. random variables with unit Fréchet
distribution. According to Proposition 2.2 in Davis and Resnick [10] the unique
stationary solution to (5.7) is given by

Xn =

∞∨
i=0

ciZn−i.

The process (Xn) is strongly mixing (see for example Ferreira and Ferreira [11],
Proposition 3.1) and therefore Condition 2.2 holds. The joint regular variation
property and Condition 2.1 for the process (Xn) can be obtained by an application
of Theorem 2.3 and Theorem 2.4 in Meinguet [20]. The extremal index of the
sequence (Xn) is given by θ = 1 − c (see Ancona-Navarrete and Tawn [2] and
Ferreira and Ferreira [11]).
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