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Introduction

Functional limit theorems for sequences of independent and identically distributed
random variables have been known for quite some time. These theorems can be divided
into two main groups depending on whether the second moments of the underlying
random variables are finite or infinite. The first step toward generalization of these
results is to replace independence by some weak dependence property. Such questions
will be studied in this thesis.

Let (X,)n>1 be a strictly stationary sequence of random variables and let S, =
X1+ -4+ X,, n > 1, denote its corresponding sequence of partial sums. The main
goal of this thesis is to investigate the asymptotic distributional behavior of the D]0, 1]
valued process

Valt) = a7 (Spy — Lt Jb). € [0.1],

under the properties of weak dependence and regular variation with index o € (0,2),

where (a,) is a sequence of positive real numbers such that
nP(|X1] > a,) — 1,

as n — 0o, and

bn = E(X1 11 1<a,))-

Here, |z| represents the integer part of the real number z and DJ0, 1] is the space of

real-valued right continuous functions on [0, 1] with left limits.
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Recall that if the sequence (X,,) is i.i.d. and if there exist real sequences (a,) and

(b,) and a non-degenerate random variable S such that as n — oo,

Sn_bn d
i

S, (0.1)

Qn
then S is necessarily an a-stable random variable, i.e. the law of X; belongs to the
domain of attraction of S. Classical references in the i.i.d. case are the books by Feller
[32] and Petrov [56], while in LePage et al. [46] we can find an elegant probabilistic
proof of sufficiency and a nice representation of the limiting distribution.

Weakly dependent sequences can exhibit very similar behavior. In [22], Davis
proved that if a sequence (X,,) of regularly varying random variables with tail index
a € (0,2) satisfies a strengthened version of Leadbetter’s D and D’ conditions famil-
iar from extreme value theory, then (0.1) holds for some a—stable random variable S
and properly chosen sequences (a,) and (b,). These conditions are quite restrictive
however, even excluding some m-dependent sequences. For strongly mixing random
sequences, a necessary and sufficient condition was obtained in Denker and Jakubowski
[27] for the weak convergence of partial sums towards an a—stable distribution. Later,
in [24] Davis and Hsing showed, by point process methods, that sequences which sat-
isfy a regular variation condition for some «a € (0,2) and certain mixing conditions
also satisfy (0.1) with an a-—stable limit. Building upon the same point process ap-
proach, Davis and Mikosch [25] generalized these results to multivariate sequences.
Most recently, Bartkiewicz et al. [6] provided a detailed study of the conditions for the
convergence of the partial sums of a strictly stationary process to an infinite variance
stable distribution. They also determined the parameters of the limiting distribution
in terms of some tail characteristics of the underlying stationary sequence.

The asymptotic behavior of the processes V,,(-) as n — oo is an extensively studied

subject in the probability literature. In our considerations the index of regular variation
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a will be less than 2, which implies the variance of X7 is infinite. In the finite-variance
case, functional limit theorems differ considerably and have been investigated in greater
depth, see for instance Billingsley [12], Herrndorf [37], Merlevede and Peligrad [49], and

Peligrad and Utev [55].

A very readable proof of the functional limit theorem for i.i.d. sequences of regularly
varying random variables with infinite variance can be found in Resnick [60]. Durrett
and Resnick [28] considered functional limit theorems for dependent random variables
in the context of martingale theory, while Leadbetter and Rootzén [45] studied this
question in the context of extreme value theory. Their functional limit theorems hold
in Skorohod’s J; topology. However, this choice of topology excludes many important
applied models. Avram and Taqqu [3] obtained a functional limit theorem in D|0, 1]
endowed with Skorohod’s M; topology for sums of MA processes with nonnegative
coefficients. They also showed why the J; metric is not always well suited for studying
weak convergence of the processes V,, when the variables X, are not independent. For
some more recent articles with related but somewhat different subjects we refer to Sly
and Heyde [66] who obtained nonstandard limit theorems for functionals of regularly
varying sequences with long-range Gaussian dependence structure sequences, and also
to Aue et al. [1] who investigated the limit behavior of the functional CUSUM statistic
and its randomly permuted version for i.i.d. random variables which are in the domain

of attraction of a strictly a—stable law, for a € (0,2).

The main result of this thesis shows that for a strictly stationary, regularly varying
sequence for which clusters of high-threshold excesses can be broken down into asymp-
totically independent blocks, the properly centered partial sum process (V,(t)):cpo,]
converges to an a—stable Lévy process in the space D[0, 1] endowed with Skorohod’s

My metric under the condition that all extremes within one such cluster have the same
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sign. In proving this result we combine some ideas used in the i.i.d. case by Resnick
[58, 60] with a new point process convergence result and some particularities of the M
metric on DI0, 1] that can be deduced from Whitt [69]. This result can be viewed as a
generalization of results in Leadbetter and Rootzén [45], where clustering of extremes

is essentially prohibited, and in Avram and Taqqu [3].

The thesis is organized as follows. In Chapter 1 we introduce notions and tools
which we are going to use in studying functional limit theorems. In Section 1.1 we
define and list some basic properties of vague convergence of measures. Using this
concept, in Section 1.2 we introduce regular variation and list some well known results
connected with it. The property of regular variation, which will be the key notion in
our considerations, has been studied extensively in the past; see for instance Bingham
et al. [13], de Haan [35], de Haan and Resnick [36], Resnick [58] and Rvaceva [61].
Section 1.3 gives one characterization of regularly varying processes in terms of their
tail processes; see Basrak and Segers [10]. In Section 1.4 is given a brief introduction to
point process theory. The emphasis is on convergence in distribution of point processes
and its characterization by convergence of corresponding Laplace functionals. A special
attention is given to the Poisson random measure which will play an important role
in the subsequent chapters. For a detailed overview on point processes we refer to
Kallenberg [39]. Section 1.5 introduces several concepts of dependence, including a—
mixing, p—mixing, and a new mixing condition, namely the mixing condition A’(a,),
which will be used in functional limit theorems as a measure of dependence. In Section
1.6 we present a result concerning the convergence in distribution of a special type of
point processes, which will be used in the proofs of our main results. The limits in our
functional limit theorems will be Lévy processes, and therefore Section 1.7 contains

some basic notions and results from the theory of Lévy processes.
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Chapter 2 is the main part of this thesis. In Section 2.1 we introduce the space
D|0, 1], which will serve as the space of sample paths of stochastic processes we will
consider. We equip this space with Skorohod’s M; and J; metrics and discus the
differences between them. We refer to Whitt [68, 69] for a detailed discussion on this
concepts. Section 2.2 is concerned with the summation functional and its continuity
with respect to the M; topology. In Section 2.3 is proven the main result of this thesis.
It gives conditions under which the partial sum stochastic process V,,(-) converges
in distribution to a stable Lévy process in D[0,1] under the M; topology. It also
characterizes the limiting process in terms of its characteristic triple. Section 2.4
provides discussion about the conditions and conclusions of the theorem proven in the
previous section. It gives also a explanation why the M; topology can not be replaced
here by the J; topology.

In Chapter 3 we deal with cases when functional limit theorems hold with the J;
topology. In Section 3.1 we present the result by Resnick [60] which gives the functional
limit theorem for independent and identically distributed regularly varying random
variables. This result is partially used in Section 3.2 in deriving the corresponding
functional limit theorem for the case when the random variables are dependent, but
have isolated extremes. Another case when the J; topology is good enough is when
we alter the definition of the partial sum process in an appropriate way. This is the
content of Section 3.3.

Chapter 4 is devoted to some particular time series models, namely MA, GARCH,
ARMA and stochastic volatility models. To these models we apply the obtained results
and obtain sufficient conditions for functional limit theorems to hold for each of these

models.






Chapter 1

Notions and tools

In this chapter we introduce notions and tools that serve as a base for the subsequent
chapters. In particular, we put our attention on regular variation, point processes
and convergence of point processes under weak dependence. We also collect various
results concerning these notions. Some of them are of independent interest, but all of
them will play an important role in proving functional limit theorems in the following

chapters.

1.1 Vague convergence

Let E =R\ {0}, where R = [~00, cc]. For z,y € E define

(r.9) = max {| 1 — | Jsign — signy (11)
p(x,y) = maxs |— — —|, mgnm—Slgny}. .
ol Tl

Then (E, p) is a locally compact, complete and separable metric space, and
B(R) N R\ {0}) = B(E) N (R\ {0})," (1.2)

where B(E) denotes the Borel o-algebra generated by the p-open sets, while B(R) de-
notes the standard Borel o-algebra generated by the open sets in the euclidian topology

(for a proof of these statements we refer to Theorem 1.5 in Lindskog [48]). Relation

For BC X weput B(X)NB:={ANB:AeB(X)}.
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(1.2) tells us that on R\ {0} the Borel o-algebra B(E) coincides with the usual Borel
o-algebra B(R), i.e. the Borel sets we are interested in are the usual Borel sets (the
points of R\ R will be of no interest apart from being a part of the modified state
space which will enable us to use the notion of vague convergence). We say a set B is

bounded away from origin if 0 ¢ B, where B denotes the closure of B.

Proposition 1.1. Every set B € B(R) bounded away from origin (in the euclidian
topology) is relatively compact, i.e. its closure B is compact (in the topology induced

by the metric p).

Proof. Assume B € B(R) is bounded away from origin. Then B C R\ [—a, a] for some
a > 0. Since in a complete metric space a subset is relative compact if and only if it
s totally bounded (see for instance Theorem 0.25 in Folland [33]), it suffices to show
that B is totally bounded, i.e. for every e > 0, B can be covered by finitely many balls
of radius .2 Write By = BN (a,00) and By = BN (—0c0, —a). Then B = By U By. To
show that B is totally bounded it is clear that it is sufficient to show that B; and B,
are totally bounded. Let show this for By (for Bs it can be shown in the same way).

We distinguish two cases:

(i) If 1/2¢ < a, then

(a,00) C (%,oo) - Kp(l,e).

€ €

(i) If 1/2¢ > a, let 77 < a < 29 < 23 < ... < Ty < Xy, = 1/2€ such that

x; — x;_1 = a’e/3 for every i = 2,...,m. Then
Z;
(251, 2] C <1+IZ_6;$Z} C K,(z,€),

for every ¢« = 2, ..., m, which implies

1
(a,00) C Kp( ,e) UK (22,€) U+ U K,(2m, €).

€

’If z € E and r > 0, the (open) ball of radius 7 about z is the set K,(z,r) = {y € E: p(z,y) < r}.
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In both cases Bj is covered by finitely many balls of radius €. Therefore By is totally

bounded. This completes the proof. Il

A nonnegative measure p on (E, B(E)) is called Radon if u(B) < oo for all relatively
compact B € B(E). Define

M, (E) = {u: p is a Radon measure on (E, B(E))}.

On the set M, (E) we introduce a topology in the following way. Let C}-(E) denote

the class of all nonnegative continuous real functions on E with compact support,? i.e.
CEHE)={f:E — [0,00) : f is continuous with compact support}.
The class of all finite intersections of sets of the form {y € M (E) : a < [; f(z) p(dzx) <

4

f(t)

0 t

Figure 1.1: An example of a function from Ci(E).

b} with arbitrary f € C}(E) and a,b € R form a base for a topology on M, (E). The

topology with this base is called the vague topology. This topology is metrizable and

e

for some sequence of functions f;, € C}t(E). This metrization is complete and separable

one measure that induces this topology is given by

o1, ) = fz [1 - exp{ - \ [ rptie) = [ fpatan

(see Kallenberg [39, p. 170]). Note that a sequence (i, ) of measures in M, (E) converges

3The support of a function f is the set supp(f) = {x € E: f(z) # 0}.
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to 4 € M, (E) in the vague topology (or vaguely: written p, — p) if and only if
Je [ (@) pa(dz) — [5 f(2) p(dz) for every f € Ci(E).
This convergence may hold also for some non-continuous functions, which is the

statement of the following result (see Kallenberg [39], 15.7.3).

Proposition 1.2. Let p, juy, pia, ... € My (E) with p, — p as n — oo. Then, as n —
00, fE ) fp(dz) — fE ) u(dz), for every bounded measurable function f: E —

0, 00) with compact support satisfying p(Dy) = 0.4

If we replace the space M, (E) by the subspace consisting of all finite measures in
M, (E), and C'£(E) by the class of all bounded continuous real functions on E, we obtain
the weak topology. Then a sequence (u,) converges to u in this topology (or weakly:
written p, — p) if and only if [, f(z) pn(dz) — [; f(x) p(dz) for every bounded and
continuous function f: E — [0, 00). It is obvious that weak convergence implies vague
convergence. By the following result, for finite measures under an additional condition,

the converse also holds (see Kallenberg [39], 15.7.6).

Proposition 1.3. Suppose i, ji1, pla, . .. € My (E) are bounded measures. Then i, — j

if and only if p, = p and p,(E) — p(E).

Vague convergence is equivalent with convergence of measures of a special class of
relatively compact sets. The precise statement is given in the following theorem (for a

proof see Kallenberg [39], 15.7.2).

Theorem 1.4. Let u, py, pio, ... € M (E). Then the following statements are equiva-

lent.

(7;) Hn = 27

4Dy is the set of discontinuity points of the function f.
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(i1) pn(B) — w(B) for every relatively compact set B € B(E) such that (0B) = 0,

(111) limsup,,_, . ptn(F) < p(F) and iminf, o 1, (G) = p(G) for every compact F €

B(E) and every open relatively compact G € B(E).

All notions introduced in this section can be generalized to the multidimensional
case. Our state space, in d-dimensional case, then become E? = R? \ {0}. Then there
exists a metric p on E? such that (E?,7) is a locally compact, complete and separable
metric space. In an obvious manner we can directly generalize all the remaining notions
and results in this section to the d-dimensional case (for details see Kallenberg [39] or
Lindskog [48]). The concept of vague convergence can be generalized to an arbitrary
locally compact topological space with countable base (see Kallenberg [39] or Resnick

[60]).

1.2 Regular variation

In this section we will introduce the notion of regular variation for random vectors
and give some basic results concerning regular variation. Next we will generalize this

notion to sequences of random variables.

Definition 1.5. A d-dimensional random vector X is regularly varying if there
exists a sequence (a,) of positive® real numbers tending to oo and a monzero Radon
measure p on (E<, B(EY)) with ;L(Rd \ R%) = 0 such that, as n — oo,

nP(§ c ) (o). (1.4)

Qn

Many facts about regular variation are known from the works of Feller [32], de Haan

[35], de Haan and Resnick [36], Resnick [58] and Rvaceva [61]. More recent references

5A real number z is positive if > 0, and negative if < 0.
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are for instance Basrak [7], Basrak et al. [8] and Lindskog [48]. Here we give a theorem
in which we collect some of these facts that we are going to use in the following
sections. First we give an equivalent formulation of regular variation in terms of weak
convergence of finite measures on (S¥°1, B(S 1)), where S¥1 = {x € R?: ||z|| = 1} is
the unit sphere in R%, with || - || being an arbitrary (and fixed) norm on R¢. Second

we write down some basic properties of the limiting measure p from (1.4).

Theorem 1.6. (i) Let X be an R%-valued random vector. Then X is regularly vary-
ing if and only if there exist an o > 0 and a probability measure o on B(S*!)

such that, for every x >0, as u — 00,

POX] > vz, X/IX| € ) w,
P(IX] > u)

x % (), (1.5)

(i) The limiting measure u in (1.4) has the following property: there exists an o > 0

such that
p(uB) =u " u(B)

for every u > 0 and B € B(E?).
(iii) For the measure p it also holds that

(1) u(uSt1) =0 for every u > 0;

(2) p({x}) =0 for every x € E%;

(3) w(0Vys) = (Vi os) for every u > 0 and S € B(S*™'), where V, s = {x €
R x| > u, /||| € S}

(4) n(Voysy) = 0 for all but at most countably many s € S*.

For the proof of this theorem we refer to Theorem 2.1.8 in Basrak [7] and theorems

1.8, 1.14 and 1.15 in Lindskog [48].

6This « is the same as in (1.5).
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Definition 1.7. The number o in (1.5) is called the index of regular variation of

X, while the probability measure o is called the spectral measure of X.

Proposition 1.8. Suppose the random vector X is reqularly varying with index of

reqular variation o > 0. Then
P(|X]| > z) =2 “L(x) for every x > 0, (1.6)
where L is a slowly varying function, i.e. for everyt >0, L(tx)/L(x) — 1 as x — oo.

Proof. We have to prove that the function L defined by L(z) = z*P(||X]| > z) is

slowly varying. Take an arbitrary ¢ > 0. Then using relation (1.5) we obtain

L(tx) _ o P(||X]| > tx)
L(x) PIX] > )

—t* =1,
as r — o0. O

Remark 1.9. The sequence (a,,) that appears in Definition 1.5 is not unique. However,

it satisfies the following asymptotic relation

a
M_))\ua as n — oo.
ap

Therefore it can be represented as
an = nY*L'(n),

where L' is a slowly varying function. We shall often choose the sequence (a,) such
that nP(||X]| > a,) — 1 as n — oo (it suffices to take a, to be the 1 — 1/n quantile of

the distribution function of || X]||, for n > 2).
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Remark 1.10. Rewriting the statement of Theorem 1.6 (i) in the 1-dimensional case
we obtain that the random variable X is regularly varying if and only if there exist
a > 0 and p € [0, 1] such that, for every = > 0, as u — oo,

P(X > ux)

P(X < —ux)
P(|X| > u)

P(|X]| > u)

—

— px and — qx~ %, (1.7)

where ¢ = 1 — p. The limit measure p from relation (1.4) is then of the form

pld) = (paz (g 00)(2) + g —2) "1 Log(x)) di (1.8)

while the spectral measure o is given by o({1}) = p and o({—1}) = q.

If Xy,...,X, are independent and identically distributed regularly varying random
variables with index of regular variation o > 0 then it is known that the n-dimensional
random vector X = (Xj,...,X,,) is regularly varying with the same index and his
spectral measure concentrates on the points of intersection of the unit sphere with the
axes. For the sake of illustration we shall prove this here for n = 2 (see Lemma 7.2 in
Resnick [60] for a different proof of this result, but for nonnegative components only).

Forr>0let B, ={zeR: |z| <r}.

Proposition 1.11. Suppose X; and Xy are independent and identically distributed
random variables, reqularly varying with index o > 0. Then the random vector X =
(X1, X5) is reqularly varying with indez o, and the spectral measure of X is concentrated

on the following points (1,0),(0,1),(—1,0), (0, —1).

Proof. Take the sequence (a,) such that nP(|X;| > a,) — 1 as n — oo. Then from

the setting in Remark 1.10 it follows that, for any r» > 0,

nP(|Xy| > ra,) — r™® asn — oc.
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Take now ¢; > 0 and €5 > 0. Since

nP(a,'X € B, x BY) = nP(|Xi1] = €10,)P(| X2| = e2a,)

— 0,

asn — oo, it follows that nP(a;'X € -) = Ji(-) as n — oo, where /i is a Radon measure
on (E2, B(E?)) which concentrates on ({0} x R) U (R x {0}) and for any B € B(E),
u({0} x B) = (B x {0}) = u(B), where p is the limiting measure of regular variation
of X; (and X5), i.e. nP(a;'X; € -) = u(-). For an arbitrary » > 0, by Theorem 1.6

(ii), we have
Al(r,0) x E) = fi((r, 00) x {0}) = p((r.00)) = r~pu((1,00)).
In particular, for r = 1, fi((1, 00) x E) = u((1, 00)). Therefore
Ail(r, 00) x E) = r~@((1,00) x E),

and we may conclude that the index of regular variation of X is «.

Assume now the spectral measure o of X; (and X5) is of the form o ({1}) = p € [0, 1]
and o({—1}) = ¢ =1— p. Let us find the spectral measure o of X. Let || - || be the
so-called ”sup” norm on R? i.e. |[(z1,72)]| = max{|zy|,|x2|}. First of all note that
from nP(|X;| > a,) — 1 as n — oo for i = 1,2, it follows that nP(||X|| > a,) — 2.

Thus by relation (1.5) we obtain that, as n — oo,
nP([IX]| > an, X/[X]| € 5) — 20(5), (1.9)

for every S € B(S') such that 5(9S) = 0. Since for all but at most countably many
s € St, 5({s}) = 0, we can find a sequence of points (zz,yx) in S'N{(z,y) € R* : x,y >
0} such that o({(xk, yx)}) = o({(xk, —yx)}) = 0 for every k € N and (g, yx) — (1,0)

as k — oo in the || - || norm. Let Sy be the connected closed subset of S' with edges
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in the points (g, yx) and (xg, —yx) which contains the point (1,0), i.e. S = {(z,y) €
S': x > x4 }. Then, since 5(9Sx) = ({(zx, yr), (zx, —yr)}) = 0, from relation (1.9) we

obtain that, as n — oo,
nP(IX[| > an, X/|IX|| € Sk) — 20(Sk),  forallk € N.

On the other hand, since i is concentrated on the axes, by Theorem 1.6 (iii) we have

ﬁ(a‘/lysk) = ﬁ(‘/l,ask) = 0. Hence
nP(|X|| > an, X/||X|| € Sx) = nP(a,'X € Vis)
—  (Vi,s) = i((1,00) x {0}),

as n — oo. Comparing the last two equations we conclude that

1i((1,00) x {0}) = 25(Sk)
for all £ € N. Since

p((1,00) x {0})) = p((1,00)) = lim nP(X; > a,) = p,

it follows that o(Sg) = p/2 for all k € N. Since the sets Sk, as k tends to oo, form a
decreasing sequence that shrinks to the point (1,0), using the continuity probability
property with respect to a decreasing sequence of sets, we obtain that o({(1,0)}) = p/2,
and in the same manner, ({(0,1)}) = p/2, c({(—=1,0)}) = ¢/2 and o({(0,—-1)}) =
q/2. In particular we proved the spectral measure is concentrated on the points of

intersection of the unit sphere S' with the axes. O]

In regular variation theory an important role plays the relation between the tails
and the truncated moments of regularly varying random variables. The following result
gives this relation which we shall use a couple of times in forthcoming chapters. It is
based on Karamata’s theorem (Theorem 1 in Feller [32, p. 273]; see also Theorem

1.5.11 in Bingham et al. [13]).
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Theorem 1.12. Suppose the random wvariable X is regularly varying with index of

reqular variation o > 0. Then, as v — 00,

E(XMyxsn) |«

) A 1.1
PPIX|>2) a—x d0sA<a (1.10)

and
E(IX M xi<ay)
2 P(|X]| > z) A —«

Proof. If A € (0, «), then by Lemma 5.7 in Durrett [29, p. 43] and Theorem 1 in Feller

if A> o (1.11)

[32] we have

BIXMgxpay) _ Jo WTP(IXLgxpsay > y) dy
2P([X] > z) 2 P(|X] > z)

fox )\y’\_lP(|X| > x) dy fmoo )\y)‘_lP(|X| > y) dy
2 P(|X]| > z) 2P| X]| > z)

[y P(IX] > y) dy
2P| X]| > z)

" A o
— = as T — 00.
a—N  a—A

— 1+

If A > « then using again Lemma 5.7 in [29] and the fact that for y € (0, )

P(X[>y) = P(X|>y, |X]>2)+P(X]>y, [X]<z)

= P(IX|> )+ P(IX|1x1<ay > ¥),

we obtain that

E(IXMyxicay) — Jo MTP(X Lxicay > 9) dy
?P(|X] > z) ?P(|X]| > z)
_ S WP (X xi<ay > ) dy
PP(X| > o)

fom )\y’\*lP(|X| > y) dy B fow /\y)‘*lP(|X| > :E) dy
2P| X]| > z) *P(|X| > z)

Jo v 'P(IX] > y) dy
*P(|X]| > z)

-1
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Now an application of the above mentioned Theorem 1 in [32] yields that

BIXM xicn) A _
2P| X] > z) A— A—«

as r — OQ.

Next we define the regular variation property for random processes.

Definition 1.13. We say a random process (X, )nez is reqularly varying with index

a > 0 if all its finite-dimensional distributions are regularly varying with index o.

Remark 1.14. From Definition 1.13 we have immediately that a strictly stationary
sequence of random variables (X,,) is regularly varying with index o > 0 if for every
k € N the random vector (X1, ..., X}) is regularly varying with index . In particular,

for every n the random variable X, is regularly varying with index «.

Remark 1.15. From Proposition 1.11 (and its generalization to arbitrary finite-dimensional
random vectors with independent, identically distributed and regularly varying compo-
nents) it follows that if (X,,) is a sequence of i.i.d. regularly varying random variables

with index o > 0, then the random process (X,,) is regularly varying with index a.

1.3 Tail process

The following result provides a useful characterization of regular variation for strictly

stationary processes.

Theorem 1.16. (Basrak and Segers [10], Theorem 2.1) Let (X, )nez be a strictly
stationary process in R and let a € (0,00). Then (X,,) is reqularly varying of index
a if and only if there exists a process (Yn)nez in R with P(|Yo| > y) =y fory > 1
such that, as x — 00,

(™ X )nez | 1 Xo| > ) ™5 (Ya)nez, (1.12)
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fidi L . .
where 7— 7" denotes convergence of finite-dimensional distributions.

Definition 1.17. The process (Y;,)nez that appears in Theorem 1.16 is called the tail

process of a strictly stationary reqularly varying random process (X, )nez.-

Write ©,, = Y,,/|Ys| for n € Z. If (X,,)nez is regularly varying, by Corollary 3.2 in
Basrak and Segers [10]

fidi

((‘Xorlxn)nez ‘ ’XO’ > 37) B (@n)nez- (1.13)

The process (0,,),ez is independent of |Yy| (see Theorem 3.1 in [10]), and by relations
(1.5) and (1.13), the law of ©y € S® = {—1,1} is the spectral measure of X,. Thus we

call the process (0,,),ez the spectral process of (X,,)nez.

Example 1.18. Suppose (X,,) is a strictly stationary regularly varying process with
index a > 0 consisting of independent random variables. Its tail process has a very
simple representation. Fix k € Z\ {0} and let » > 0 arbitrary. From relation (1.12)

we obtain that
P(|Yy| >r) = lim P(|Xy| > ra, ’ | Xo| > a,) = lim P(|Xy| > ra,)
- 0,
where the last equation is a direct consequence of relation (1.4). Since r > 0 is
arbitrary it follows that Y, = 0 for every k € Z \ {0}. From relation (1.12) and the
regular variation property of Xy we obtain that P(|Yy| > y) = y~* for y > 1. Therefore

Yo = Og|Ys|, where the law of Oy is the spectral measure of Xy, In|Y| has exponential

distribution with parameter «, and ©y and |Yp| are independent.

1.4 Point processes

In studding functional limit theory the notion of point process will be very useful.

Our functional limit theorems will relay on convergence of a specific sequence of point
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processes. In this section we introduce the basic notions and results on point processes
which will be used later on. For more background on the theory of point processes we
refer to Kallenberg [39] and Resnick [60].

Let X be a locally compact Hausdorff topological space with countable base and
B(X) its Borel o-field. As in Section 1.1 denote by M (X) the space of Radon measures
on (X, B(X)) endowed with vague topology. A Radon point measure is an element of
M. (X) of the form m = >".°, d,,, where 0, is the Dirac measure:

1, €A,
0. (A) =

0, otherwise,

for every A € B(X). Let M,(X) denote the set of all Radon point measures on
(X,B(X)). Since M,(X) is a subset of M (X) we endow it with the relative topol-

ogy. Let M, (X) be the Borel o-field of subsets of M,(X) generated by open sets.

Definition 1.19. A point process on X is a measurable mapping from a given prob-

ability space to the measurable space (M,(X), M, (X)).

Example 1.20. A standard example of point process is the Poisson process. Suppose
p is a given Radon measure on (X, B(X)). We say N is a Poisson process with mean
(intensity) measure p or, synonymously, a Poisson random measure (PRM(u)), if it

satisfies the following conditions:

(i) for every A € B(X) and nonnegative integer k,

e (A) (AR

0, otherwise,

(ii) if Ay,..., Ay are mutually disjoint subsets of X, then N(A;),..., N(A;) are in-

dependent random variables.
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When X is a finite-dimensional Euclidian space R? or one of its topological subsets
and the mean measure p is a multiple of Lebesgue measure, we call the process homo-
geneous. Therefore in the homogeneous case, for any Borel set A, N(A) is a Poisson

random variable with mean EN(A) = ALEB(A), for some A > 0, where LEB(A) is the

Lebesgue measure of A. The parameter \ is called the rate (or the intensity) of N.

Figure 1.2: Point processes can be viewed as collections of randomly placed points in
the state space. Here is given an example of a point process N, yielding N(A) = 4.

Next we define the notion of convergence in distribution for point processes in the

usual way.

Definition 1.21. We say a sequence of point processes (N,) on X converges in
distribution to a point process N on X, and write N, LR N, if Ef(N,) — Ef(N) for

every bounded continuous function f: My(X) — R.

Let B, denote the set of bounded measurable functions f: X +— [0, 00). For f € B,

and p € M,(X), we use the notation
u(5) = | fan(ds)
X
Thus for m =Y 0, 8., € M,(X),

m(f) = [ Feymidn) = 3 sz
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In dealing with distributions of point processes a very useful transform technique is

the Laplace functional.

Definition 1.22. Let N be a point process on X. The Laplace functional of N is

the nonnegative function on By given by
Un(f)=Ee M) feB..

The distribution of a given point process N is uniquely determined by the values
of its Laplace functional Wx(f), f € C}-(X) (see Theorem 3.1 in Kallenberg [39]). The
next result gives the characterization of convergence in distribution of point processes

by convergence of Laplace functionals on C(X) (see Kallenberg [39], Theorem 4.2).

Theorem 1.23. Let N, Ny, No, ... be point processes on X. Then N, 4N if and only

if U, (f) = Un(f) for every f € CEH(X).

Example 1.24. Here we give the Laplace functionals in three special cases:

(1) Let pp € M,(X). Define the point process N to be identically fy, i.e. if (2, F, P)
is the underlying probability space then N(w) = pq for every w € Q. The Laplace

functional of N at f € B, is then given by
Uu(f) = / e N@) IP () = ol
Q

(2) Suppose X7, ..., X, are i.i.d. random elements in X and define the point process

N by
N=> 4y,
=1

Its Laplace functional is of the following form

Un(f) = Ee N = Fe~ iz f(X0) — (Ee—f(Xl))”7 feB,.
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(3) The Laplace functional of a Poisson process N with mean measure p can be

calculated as

wn(p) =exp{ = [ (1= )t} seB,

(see for instance Theorem 5.1 in Resnick [60]).

The next result tells us when we can enlarge the dimension of the points of the
sequence of point processes which converges to a Poisson random measure and retain

the Poisson structure in the limit. For a proof see Lemma 4.3 in Resnick [58].

Lemma 1.25. Let Xy and Xy be two locally compact Hausdorff topological spaces with
countable base. Suppose (Xi) and (Y, ) are random elements of X; and Xy respec-
tiwely. If (Xy) is an i.i.d. sequence of random elements, such that for every n € N the

families (Xy) and (Yy, k)r are independent, and if, as n — oo,

> 6y, - PRM(n),

k=1

on Xy, then as n — oo,
> 0xe v = PRM(P(X; € 1) x )
k=1

on Xl X XQ.

In Section 3.1 we will need the following two results. The first one gives a sufficient
condition for two sequences of points processes to be close in probability with respect to
the vague metric introduced in (1.3), while the second one describes the convergence
of a point process formed from a triangular array of random variables to a Poisson

random measure.
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Proposition 1.26. Suppose (N,,) and (N]) are two sequences of point processes on X

such that for every f € C£(X), as n — oo,

P

[Na(f) = No(F)] = 0.
Then d,(N,, N}) L0 as n — oo, where d, is the vague metric given in (1.3).

Proof. Let €, § > 0 be arbitrary. Since the series Y -, 2% converges, there exists an

]{30 = k?o((;) € N such that

A
Zngﬁ.

k=ko+1
For every k = 1,..., ko it holds that | N, (fx) — N/, (fx)] L, 0 as n — oo, where (fr) are
the functions from relation (1.3). Thus there exists an ng = ny(¢,0) € N such that for
every k=1,..., ko,

J

P(INa(f) = Ni(fl > i) < o0 > mo

Then using the inequality 1 —e™* < 2 A1 for z > 0, where s At denotes min{s, ¢}, we

obtain for every n = ny,

P(dy(No, Np) > 8) = P(DD27H1 = e WMt > )
k=1
< SP(N ) - Ml > o) +P( 30 2t D)
" " 2]45() 2
k=1 k=ko+1
€

ko — =

< Ko T €,
showing that d,(N,, N)) o O

Proposition 1.27. Suppose (Y, k) are random elements of X, such that for every

n € N, Yn’l,Yn’g,Yn’g, ... arei.i.d. and

maP(Yi1 € ) 5 (), (1.14)
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as n — oo, where (m,) is a sequence of nonnegative integers such that m, — oo and
v is a Radon measure. Then, as n — oo,
Mn
d
E dy, , — PRM(v)
k=1

on X.

Since the proof of this proposition follows the same argument as given in the proof

of Theorem 5.3 in Resnick [60], it is here omitted.

Let X' be a measurable subset of X and give X' the relative topology inherited from

X. Define the restriction map T: M,(X) — M,(X') by

Tm=m (1.15)

X’

For a set B C X' let 0w B denote the boundary of B in X’ and dxB the boundary of

m m|X,

Figure 1.3: The left figure represents an example of a point process m € My(X) given

by its points (or atoms), while the right figure represents m restricted to the subset X'.

B in X. The restriction map 7" then posses the following continuity property.

Proposition 1.28. (Feign et al. [31], Proposition 3.3, (a) and (b)) Let m € M,(X)

with m(0xX') = 0. Then the following statements hold.
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(a) The restriction map T: My(X) — M,(X') defined in (1.15) is continuous at m,
s0 if my, — m in M,(X), then Tm,, — Tm in M,(X').

(b) The same conclusion holds if we define T the same way but consider it as a

mapping T : M,(X) — M,(X).

At the end of this section we give a result which describes what it means for two
Radon point measures m; and msy to be close. They will be close if in any compact
subset of the state space, the finite number of points of m; are close in location to the

finite number of points of ms.

Lemma 1.29. Suppose m,,, n > 0, are point measures in M,(X) and m,, 2% mg. For
every compact set K C X, such that mo(OK) = 0, we have for n = n(K) a labeling of

the points of m, and mqg in K such that

S S
mn|K:Z(5z§")7 mo\KZZ%on
i=1 =1

and for every i =1,...,s, we have in X,

For a proof of this lemma we refer to Lemma 7.1 in Resnick [60] (see also Neveu

[53]).
1.5 Weak dependence

The limit theorems in the classical central limit theory were studied under the as-
sumption that the underlying random variables were independent. One of the ways to
generalize these theorems is to replace the independence by certain weak dependence
conditions. The dependence condition that we shall use will be relatively weak, and it

will be implied by the well known strong mixing condition.
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In the literature one can find many measures of dependence. Here we shall give
five of them which are the most used in applications. For a more detailed discussion
about measures of dependence and mixing conditions we refer to Bradley [16]. Suppose
(Q, F,P) is a probability space. For any o-field A C F, let Ly(.A) denote the space of
square-integrable, A-measurable, real-valued random variables. For any two o-fields

A, B C F define the following set of coefficients which are used to measure dependence:

a(A,B) = sup{|P(ANB)—-P(A)P(B)|: A€ A,B € B},

o(A,B) = sup{|P(B|A)—-P(B)|: A€ A P(A)>0,B¢€B,},

(A, B) = sup { [P(4 mpbill)_;zg)lW(B” cAe A B e B},
p(AB) = suwp] 'E(%E” X € Ly(A)Y € Ly(B)},

HAB) = sy S S IP(ANB,) —~ PAP(B)),

i=1 j=1
where the supremum in the last equation is taken over all pairs of (finite) partitions
{A1,..., A} and {By,...,B;} of Q such that A; € A for all i and B; € B for all j.

These coefficients satisfy the following inequalities:

20(A,B) < B(A,B) < ¢(A, B) < 59(A, B);

DN | —

4a(A,B) < p(A B) < yY(A, B);

p(AB) < 2v/¢(A B).

Now suppose (X, )nez is a sequence of random variables. For —oo < k <1 < o0
define F| = o({X; : k <i < 1}). Now we are ready to define the mixing conditions for

a sequence of random variables.

Definition 1.30. We say the sequence (X,,) is:
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(i) a-mixzing (or strongly mixing) if a(n) = suga(?foo, in) — 0 asn — oo,
je

(i1) ¢-mixing if ¢p(n) = suIZ} gb(fioo,ffin) — 0 asn — o0o;
J€

(111) Y-mixing if ¥(n) = sugw(ffoo,fﬁn) — 0 asn — 00;
je

() p-mizing if p(n) = sup p(F~ ., F

Sn) — 0 asn — oo;
jez

(v) B-mixing (or absolutely regular) if f(n) = 51615 B(F ., Fiin) — 0 asn — oco.
j

Note that when the sequence (X)) is strictly stationary, one has simply a(n) =
a(F° , F), and the same holds for the other dependence coefficients ¢(n), 1(n),
p(n) and 5(n).

Remark 1.31. By the inequalities above the following implications hold for a given

sequence of random variables:

(i) f-mixing = a-mixing;

(ii) p-mixing = a-mixing;

(iii) ¢-mixing = ([-mixing and p-mixing;
(iv) ?-mixing = ¢-mixing.

Aside from transitivity, there are no other implications between these mixing conditions
in the general case. However, for some special families of random sequences, e.g.
Gaussian sequences and discrete Markov chains, some additional implications hold

(see Theorem 3.1, Theorem 3.2 and Theorem 7.1 in Bradley [16]).

Example 1.32. Here, besides examples of random sequences that satisfy some (or all)

of these five mixing conditions, we give an example where all of these mixing conditions

fail to hold:
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(a) A sequence of independent or m-dependent random variables satisfies all of these

five mixing conditions.”

(b) Suppose (Zg)kez is an i.i.d. sequence and the distribution of Z; is absolutely
continuous with a density which is Gaussian, Cauchy, exponential or uniform

(on some interval). Then the random sequence (X} )rez defined by

X = i 27 7y,

J=0

is well defined, strictly stationary and (-mixing (see Example 6.1 in Bradley
[15]).

(¢) Suppose now (Zy)kez is an i.i.d. sequence with P(Z; = 0) = P(Z; = 1) = 1/2.
Define
X, = Zz—fﬂzk_j, keZ.

Then the sequence (X,,) is not a-mixing, since a(n) = 1/4 for all n € N (see
Example 6.2 in Bradley [15]). Therefore, in view of Remark 1.31, the remaining

four mixing conditions also fail to hold.

Recall E = R\ {0}, and take a sequence of positive real numbers (a,) such that

Ay — OO aS N — OQ.

Definition 1.33. We say a strictly stationary sequence of random wvariables (X,)
satisfies the mixzing condition A'(a,) if there exist a sequence of positive integers (ry,)
such that r,, — oo and r,/n — 0 asn — oo, and such that for every f € C([0,1] X E),

denoting k, = |n/r,]|, as n — oo,

Eexp{ Zf(ﬁ a)} HEexp{ Zf(% —Z>} — 0. (1.16)

"The random variables {X,, : n € Z} are m-dependent if the o-fields ]kll, e
ifk; 1 +m<j;foralli=2,... L

,F jkl ! are independent
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The following result shows that a strictly stationary strongly mixing sequence of

regularly varying random variables satisfies the mixing condition A’(a,,).

Proposition 1.34. Suppose (X,,) is a strictly stationary sequence of reqularly varying
random variables with index of reqular variation o > 0, and (a,) a sequence of positive
real numbers such that nP(|X1| > a,) — 1 as n — oo. If (X,,) is strongly mizing then

the mizing condition A'(a,) holds.

Proof. Let (l,) be an arbitrary sequence of positive integers such that [, — oo as
n — oo and I, = o(n'/®), where b, = o(c,) means b, /c, — 0 as n — oo. Define, for

any n € N,

rn = |max{n/ay, 11, n**}| + 1.

Then r,, — 0o as n — oo. Since the sequence (X,,) is a-mixing, aq, 1 — 0 as n — oo,
and therefore r,/n — 0 as n — oco. Put k, = [n/r,|. Then it follows that k, — oo

and

knoy, 41— 0 and — 0, (1.17)

as n — OoQ.

Fix f € C([0,1] x E). We have to show that I(n) — 0 as n — oo, where

o= e - (5 59} - T { - $a(2 2

i=1 k= i=1
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We have

I(n) < ‘Eexp{ Zf(n aﬂ)} EeXp{_if(%’a%>H

kntTn kn krp—ln .
1 X;

+EeXp{ Zf(n an>} EeXp{_Z 2 f(ﬁa?)”

k=1 i=(k—1)rn+1

krn,—ln ‘ kn Tn—In
pen{-> S (L)} TTpen - M@ )
k=1 i=(k—1)rp+1 k=1

[Tren{ =5 s(82 29} - T { - 3o s(22 2

=: I1(n)+ Ly(n) + I3(n) + I4(n) (1.18)

The function f is nonnegative, bounded (by M > 0 let us suppose) and its support
is bounded away from origin, which implies that f(s,x) = 0 for all s € [0,1] and |z| < §
for some § > 0. Put j, = n — k,r,. Then by stationarity and using the inequality

1 —e ™ < x for any & > 0, we obtain

knTn

no < Efen{ -3 e (- 3 ()]

i=knrn+1
S D OFCES B S S T
< Mj,P(|X:| > day,). (1.19)

In a similar manner we obtain

L(n) < Mkl P(1X1| > day). (1.20)
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We have

kn  kra—ln P X
no < [mee{=3 Y (53]
k=1 i=(k—1)r "

—1D)rp+1
rn—l krn—l1 .
—E _
ew{ -3 (5 ) Jpen{ - (el
k=2 i=(k—1)rn+1
rn—l krn—l .
e { - (5 e { - o)l
k=2 i=(k—1)rn+1

rn—ln

~pen{ - T (e { =X S (1)

k=2 i=(k—1)rn—+1

rlpen{ - S (2 B e { -3 S (L)

i=(k—1)rn+1

k?n Tn ln

leen{ -5 (50 2}

The inequality

|E(gh) — Eg Eh| < 4C1Chany,,

for a F’ __ measurable function ¢ and a F3% m measurable function h such that |g| < C,

and |h| < Cy (see for instance Lemma 1.2.1 in Lin and Lu [47]), gives
[5(71) < 40éln+1. (121)
For any ¢ > 0 there exists a constant C'(t) > 0 such that the following inequality holds:

1 —e® < C(t)|x| forall x| <t
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This inequality and Lemma 4.3 in Durrett [29] then imply

o0 < slew{ =5 (I} o (-8 G DN

< lenE‘exp{ f(%a%)}_e}{p{_f(%’%)}‘
rn In i

< 3 E’l—exp{f<; i)‘“%%)”

< oo E)f<n )‘fﬁ{)’

= C(2M) :HEHJ“(%Z(—) <n an>) {'X>5}]

Since a continuous function on a compact set is uniformly continuous, it follows that
for any € > 0 there exists v > 0 such that for (s, ), (s',2") € [0,1] x {y € E: |y| > d},
if dpxu((s,2),(s',2")) < 7 then |f(s,x) — f(s',2")] < €, where dj1jxg denotes the

metric on the direct product of metric spaces [0, 1] and E, i.e.

dipa)xe((s, ), (5, 7)) = max{|s — §|, p(x, 2")},

where p is the metric on E defined in Section 1.1. Since r,,/n — 0 as n — oo, for large

n we have
7 X Tn Xl ‘Z _rn‘
doa((125), (12, 25y izl o
n’ ap n’ a n n
forany ¢ =1,...,r, — l,. Therefore, for large n,

‘f<n an> - f(%’f_,z)‘ <6

and this implies

Is(n) < eC2M)(r, — 1,)P(|Xy| > da,), for large n. (1.22)
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Taking into account relations (1.21) and (1.22), it follows that, for large n,
I3(n) < day, 41+ € CRM)r,P(|X:1] > day) + I(n),

and since it is easy to obtain

kn krn—l, Z X kn rn—In k?" X
ro < [Bee{ -3 3 75t - TPew{- X 7(T0 20}
k=2 i=(k—1)rn+1 " k=2 i=1 "

we recursively obtain (we repeat the same procedure for I7(n) as we did for I3(n) and
so on)

I3(n) < 4kpoq, 11 + e C(2M)k,r, P(| X1| > day,). (1.23)
Stationarity and Lemma 4.3 in Durrett [29] imply

Thus from relations (1.18), (1.19), (1.20), (1.23) and (1.24) it follows that for large n,

P(IX,| > bay)
P(’X1’ > an)

Itn) < (Mj—+2]\/[ +eC(M) )-nP(\X1\>an)-
n n n
+4knaln+l-

Since X is regularly varying with index «, by Proposition 1.8 it follows that

P(|Xy| > da,) Cw
P(|X1| > an)

as n — oo. This together with relation (1.17), and the fact that j,,/n — 0, k,r,/n — 1

and nP(|X1| > a,) — 1 as n — oo, imply

limsup I(n) < eC(2M)d~“.

n—oo

But since this holds for all € > 0, we get lim,, .., I(n) = 0, and thus condition A’'(a,)

holds. [l
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1.6 Convergence of point processes under weak de-
pendence

An important ingredient in the proof of our main functional limit theorem in the
next chapter will be the convergence in distribution of a sequence of time-space point

processes defined by

N, = Z 5(i/n,Xi/an) for all n € N,
i=1
where (X,) is a strictly stationary regularly varying sequence of random variables, and

(a,) is a sequence of positive real numbers such that nP(|X;| > a,) — 1 as n — 0.
Firstly we state the conditions needed for such a convergence. Suppose that the
mixing condition A’(a,) (see Definition 1.33) holds. To control the dependence of high

level exceedances, we introduce the following anti-clustering condition.

Definition 1.35. We say a strictly stationary sequence of random variables (X,,)nez
satisfies the anti-clustering condition AC(a,) if there exists a sequence of positive
integers (r,) such that r, — oo and r,/n — 0 as n — oo, and such that for every

u >0,

lim limsupP( max |X;| > ua, ||Xo| > uan> = 0. (1.25)

M—00 oo <m<i|<rn

This condition assures that clusters of large values of | X,,| do not last for too long.

It was used by Davis and Hsing in [24] in proving that, under the so-called mixing
condition A(a,) (which we can regard as a version of our condition 4’(a,,) without the

time coordinate), the sequence of point processes

N; = Zl: 5Xi/an

converges in distribution (for details see Theorem 2.7 in [24]).
Put M,, = max{|X;|:i=1,...,n}, n € N. In Proposition 4.2 in Basrak and Segers

[10], it has been shown that under the anti-clustering condition AC(a,) the following
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value

0 = lim lim P(M, < z||Xo| > z)

r—00 T—00

- P(supm\ < 1) - P( sup Y| < 1) (1.26)

i>1 1<—1
is strictly positive, where (Y;) is the tail process of (X,). Moreover it also holds that

P(limwﬂoo Y, = O) = 1, and that for every u € (0, 00)

P(M, n
0 = lim P(M,, <wua, | |Xo| > ua,) = lim (M, > uan)

. 1.27
n—00 n—oo 1, P(| Xo| > uay,) (1.27)

The probability that M, exceeds ua, tends to zero as n — 00.® Theorem 4.3 in [10]
yields the following weak convergence of a sequence of point processes in the state

space [E:
<Z 5(anu)*1Xi
i=1

Note that as |Y;,| — 0 almost surely as |n| — oo, the point process > dy, is well-

M, > anu> 4, (Z Iy,

neZ

sup |Yi| < 1). (1.28)
i<—1

defined in E. By (1.26), the probability of the conditioning event on the right-hand
side of (1.28) is nonzero. Now we are ready to describe the convergence in distribution

of the sequence of point processes (N,) and to describe the limit. For u € (0,00) let

E, =E\ [—u,ul.

Theorem 1.36. Suppose (X,,) is a strictly stationary regularly varying random process
with index o > 0. Assume that it satisfies the mizing conditions A'(a,) and the anti-
clustering condition AC(ay), where (a,) is a sequence of positive real numbers such

that nP(|X1| > a,) — 1 as n — oco. Then for every u € (0,00) and as n — oo,

d u
Nn‘[ovl]XEu - N( )‘[O,I]XEM7 (129)

on [0,1] x E,, where N = > Zj 5(’1“.(“) uZi;) and

8Notice that P(M,., > ua,) < r,P(|X1]| > uay,) = (rn/n) - nP(|X1| > ua,) — 0 as n — oco.
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1.3, 5Ti<u> is a homogeneous Poisson process on [0, 1] with intensity Qu™;

2. (Zj 0z, )i is an i.i.d. sequence of point processes in K, independent of ), 5Ti(u>,

and with common distribution equal to the weak limit in (1.28).

Proof. Let (Xj;)jen, with k£ € N, be independent copies of (X), ey, and define

— Zn ]\A/vnyk, with Nn,k = Zn: 5(k’r‘n/n,Xk,j/an)'

j=1
By the mixing condition A’(a,) and Theorem 1.23, the weak limits of N, and N,, as

n — oo, must coincide. Take f € C}([0,1] x E,). Define

flt,x) = f(t,2)1lpaxr, (t,2), (t,x) € [0,1] x E.

Then f € C([0, 1] xE). Since No(f) = (Nl g ;1.0 ) () and No(f) = (N g 10 ) (),

from limy, oo Uy, (f) = limy_oo ¥ 5, (f) we get

lim ¥

n—oo

(H=lmw ().

10,1 xEqy "|[0,1]xJEu

Hence, the weak limits of N, ‘ and N, } ,asn — 00, also coincide. Therefore
[0,1] X, [0,1] XEu
to prove (1.29) it is enough to show that the Laplace functional of Nn}[o 1)xE, Converges

to the Laplace functional of N as n — 00.

|[o 1XE,
Let f € Cf([0,1] x E,) be arbitrary. Since the function f is bounded, there exists
M € (0,00) such that 0 < f(t,z) < M 11—y je(x). Using the inequality 1 —e™ < x

for x > 0, we obtain that
1> Ee M) > BerMEZ Lixibuan) > 1 — Mr,P(|Xo| > uan).

In combination with the elementary bound 0 < —logz — (1 — 2) < (1 — 2)?/z for

€ (0,1], it follows that

kn

—log Ee™ Mn(h) — Z(l — BeNnslf ))
k=1
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kn A _ kn A _
- _ Z log Ee Nnr(f) — Z(l _ Ee*Nn,k(f))
k=1 k=1

[Mr,P(|Xo| > ua,)* M(knrny [nP(| Xo| > uay,)]?

S =
1 —Mr,P(|Xo| >wua,) ko, \ n / 1—Mr,P(|Xo|> ua,)

— 0 asn— oo, (1.30)

since k, — 00, k,rp/n — 1, nP(|Xo| > ua,) — u* and r,P(|Xo| > wa,) — 0 as
n — oo. Let T, be a random variable, uniformly distributed on {kr,,/n : k=1,... k,}

and independent of (X;);ez. Then

kn
(1 _ Ee_Nn,k(f))
k=1
1 -
= k,P(M,, > ayu) k_n ZE[l — e 252 f(kra/n. X /an) M, > anu]
k=1
1 .
= kPO, > ag) - Z E [1 e S Tl /n X fan) | g anu]
= k.P(M,, > anu) E[l _ o S F(TauXs /(wan)) ‘ M,, > anu] (1.31)

Clearly T, converge in law to a uniformly distributed random variable 7" on (0,1). By

(1.28) and independence of sequences (7;,) and (X,,)

(Tn,idmu)lxi M, > anu) 4, (T,Zazn)
=1

neZ
where Y 0y, is a point processes on [E, independent of the random variable 7', and with

distribution equal to the weak limit in (1.28). By relation (1.27), for every u € (0, c0)
it holds that k,P(M,, > ua,) — u=* as n — oo. Thus, from relation (1.31) we have

that

kn - ~
lim Z(l — Ee Murl))y = gy [1 —e i f(T’“Zj)}
k=1

1 ~
- / E[l % f@vuzﬂ‘)} Ou dt. (1.32)
0
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Relations (1.30) and (1.32) then yield, as n — oo,

.~ 1 _
Wy, (f) = Ee ™) — exp{ - / B[l — e~ Xa /2] gy = dt}. (1.33)
0

Define now g(t) = Eexp{—>_; f(t,uZ;)} for t € [0,1]. Since ;4

Tz(u)

<T,§“>>k>)

The right-hand side is the Laplace functional of a homogeneous Poisson process on

is indepen-

dent of the 1.i.d. sequence (23 0z,;)is

FEe NG — pe- i X, F0wzy) _ g (H E (e— >, T uziy)

— Eexz log Q(Ti(

[0, 1] with intensity fu~* evaluated in the function —log g. Therefore, it is equal to

exp{ - /01[1 — g(t)]ou dt}

(see Example 1.24 (3)). By the definition of g, the integral in the exponent is equal to
the one in (1.33). Therefore

Uy (f) = ¥nw(f) asn— oo,
and this immediately gives

U (f)—>\I/N(u)‘[ (f) asn — oc.

"‘ 0,1] XEqy

[0,1]XEq,

This completes the proof of the theorem. n

Corollary 1.37. Assume the setup from Theorem 1.36. Then for every u € (0,00),
as n — oo,
4 NW)|

(1.34)

Nn‘[o,l]xﬁu [0,1] xE,

on [0,1] x E,, where E, = [—o0, —u] U [u, 00].
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Proof. Let 0 < v < u. From Theorem 1.36 we have that, as n — oo,

d (v)
Ny [0,1] Xy — N ‘[O,l]XEU

(1.35)

on [0,1] x E,. Define the restriction map T': M,([0,1] x E,) — M,([0,1] x E,) by

Tm = m’[071]XEu. Let
A = {m e My([0,1] x E,) : m(]0,1] x {£u}) = 0}.

By the properties of the tail process, it follows that P(Zj oy, ({£u}) = 0) = 1 and

therefore, P(zj 0uz,;({£u}) = 0) =1 as well. This implies
PN s, €8) = 1.

Since 9j.1jxx, [0, 1]XE, = [0, 1]x{£u}, for every m € A it holds that m(0)o,1)xw, [0, 1] %
E,) = 0. Hence, by Proposition 1.28 the restriction map 7" is continuous on the set A.

Let Dp denote the set of discontinuity points of 7. Then

P(N(v)|[0,1]><]Ev < DT) < P(‘]\[(1])|[0,1]><IEU ¢ A) =0.

The continuous mapping theorem (see Theorem 3.1 in Resnick [60]) applied to (1.35)

yields
T(N”‘[O,lleu) = T(N(v)l[o,l}xﬂ«:v)’
le.
Nn|[0’1]@u 4, N(v)|[0,1}xﬁu as n — 00, (1.36)
on [0,1] x E,. In a similar manner as above we could show that Nn|[07 1B LN
N(”){[OJ]X]EU. Recall from Theorem 1.36 that N”|[0,1]xEu 4 N O.1IXEs Therefore

d

(v) 2 W
N [0,1]><Eu—N ‘[O,l]xEu'
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This together with the fact that P(N)([0,1] x {#u}) = 0) = 1 for s = u, v, suffices
to conclude that

N 4 N@® } _

: ‘[0,1]@“ [0,1]xE,*

Now we can rewrite (1.36) as

N,| 4, N

[0,1]xEq [0,1]xEq "

]

Corollary 1.38. With the assumptions as in Corollary 1.37 it holds that, as n — oo,

d, ar(u)
N 01]xE, N ‘[0,1]@”

on [0,1] x E,.

Note that the only difference with Theorem 1.36 is that here we have the con-
vergence on the state space [0,1] x E,, while the convergence in Theorem 1.36 is on

[0,1] x E,.

Proof of Corollary 1.38. Define T} : M,([0,1]xE,) — M,([0,1]xE,) by Tiym = m 0] xEw”
Let

Ay = {m € M,([0,1] x E,) : m([0,1] x {xu}) = 0}.

Then in a similar way as in the proof of Corollary 1.37 we obtain that
P(N(U)‘[o,l]xﬁu ) =1,

and that the functional T} is continuous on the set A;. Therefore from relation (1.34)

and the continuous mapping theorem it follows that, as n — oo,

d u
Tl(Nn}[ ) _’T1<N( )|[0,1]xEu)’

0,1]xEq,
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1.e.

d (u)
Ny 0,1]xE, N [0,1]XEy

on [0,1] x E,. O
1.7 Lévy processes

The limit processes in functional limit theorems which will be studied in the forth-
coming chapters will belong to a special class of Lévy processes. In this section we
introduce a framework of the theory of Lévy processes needed to describe these limit
processes.

It will be very useful to connect Lévy processes with infinitely divisible distributions
and their Lévy-Khintchine representations. For a textbook treatment of Lévy processes
we refer to Bertoin [11], Kyprianou [44], Samorodnitsky and Taqqu [62] and Sato [63].

The probability measure p on R is infinitely divisible if for every n € N there is a

n*
n

probability measure p,, such that p = p'*, where p* denotes the n-fold convolution
of ju,.°

A random variable X is said to has an infinitely divisible distribution if its proba-
bility distribution Py is infinitely divisible.!® Equivalently X has an infinitely divis-
ible distribution if for every n € N there exists a sequence of i.i.d. random variables

Xin, .-, Xny, such that
XLXi0+ . 4 X,

where 2 denotes equality in distribution.
The following theorem gives a representation of characteristic functions of infinitely

divisible distributions, and it is called the Lévy-Khintchine representation. Let i denote

9The convolution vy *v, of two distributions v; and v on R is a distribution defined by (v1*v2)(B) =
[Jwr 18(x + y)vi(dz)va(dy), B € B(R?).
10The probability distribution (or probability law) of a random variable X is the probability measure
Py defined by Px(B) = P(X € B), B € B(R).
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the characteristic function of a probability measure p, i.e.

wu(z) = / e u(dr), z€R.
R

Then restating the statement of Theorem 8.1 in Sato [63] in the 1-dimensional case we

obtain the following theorem.

Theorem 1.39. (i) If p is an infinitely divisible distribution on R, then

~ 1 , , _
f(z) =exp | — 5@22 + ibz + /(em — 1 —izalycny)v(de)|, zeR, (1.37)
R

where a > 0, b € R and v is a measure on R satisfying
V({0 =0 and /(|x|2 A)w(de) < oo. (1.38)
R
(i) The representation of ji(z) in (i) by a, b and v is unique.

(i1i) Conversely, if a > 0, b € R and v is a measure satisfying (1.38), then there
exists an infinitely divisible distribution p whose characteristic function is given

by (1.57).

The triple (a,v,b) in Theorem 1.39 is called the characteristic triple of p, and the
measure v is called the Lévy measure of . Now we turn to the definition of Lévy

processes.

Definition 1.40. A stochastic process X = {X; : t > 0} defined on a probability space

(Q, F,P) is a Lévy process if it possesses the following properties.
(1) For 0 < s <t, Xy — X is independent of {X, : u < s}.
(2) For 0 < s <t, Xy — X is equal in distribution to X;_.

(3) P(Xo=0)=1.
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(4) The paths of X are almost surely right continuous with left limits.

Remark 1.41. If X = {X; : ¢ > 0} is a Lévy process, then it is not hard to see that
for every ¢t > 0 the random variable X; has an infinitely divisible distribution. Indeed

write X, in the form
Xi = Xy + (Xogym — Xim) + .o 4+ (Xe = X))

for an arbitrary n € N. On the right hand side, by properties (1) and (2) in Definition
1.40, we have the sum of n i.i.d. random variables, which shows that X; has an infinitely

divisible distribution.

In particular, if X = {X; :t > 0} is a Lévy process, then the random variable X;
has an infinitely divisible distribution, i.e. Px, is infinitely divisible. Conversely, if u
is an infinitely divisible probability measure on R, then there exists a Lévy process
X = {X; :t > 0} such that 4 = Px, (see for instance Theorem 13.12 in Kallenberg

[40]). Hence the following result holds.
Theorem 1.42. For a probability measure p on R, these conditions are equivalent:
(i) w is infinitely divisible;
(ii) 1= Px, for some Lévy process X = {X; :t > 0}.
Under these conditions, the distribution of X is determined by p.
Remark 1.43. For a Lévy process X = {X; : ¢t > 0} let
ox,(2) = E[e®X], zeR,

denote the characteristic function of the random variable X;. Then using the properties

of Lévy processes it follows that

PX (2) = [SOXI (Z)]t7
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for any ¢ > 0 (see Kyprianou [44, p. 4]).

Having in mind the relation between infinitely divisible distributions and Lévy
processes expressed in Theorem 1.42, for a characteristic triple (a, v, b) of a probability
distribution Py, we say it is also the characteristic triple of a Lévy process X = {X; :
t>0}.

Next we turn our attention to a special class of Lévy processes, i.e. the stable Lévy
processes. Firstly, for a random variable Y we say it has a stable distribution if for

every n € N there exist a,, > 0 and b, € R such that
Yi+... 4V, La,Y +b,, (1.39)

where Y7, ..., Y, are independent copies of Y. Relation (1.39) can be rewritten in the

form

<K—%>+...+<Yn—b—n)gany

n
Therefore, a,Y is infinitely divisible. From this we immediately obtain that Y is also
infinitely divisible. Thus every stable random variable is infinitely divisible. It turns
out that in (1.39) we necessarily have a,, = n'/® for a € (0, 2] (see Theorem 1 in Feller
[32, p. 166]). The number « is called the index of stability (or characteristic exponent).
A stable random variable with index of stability « is called a-stable.

Since stable random variables are infinitely divisible, their characteristic functions
have the form given in (1.37). The following result gives the characterization of stable

distributions in terms of theirs characteristic triples (for a proof see Sato [63], Theorem

14.3 (ii)).

Theorem 1.44. Let Y be a non-degenerate infinitely divisible random variable with

characteristic triple (a,v,b). Let 0 < a < 2. Then Y is a-stable if and only if a = 0
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and

v(uB) =u *v(B) for allu >0, B € B(R).

Sometimes is convenient to rewrite the characteristic function of a stable random

variable in the form given in the next result (see for instance Sato [63], Theorem 14.15).

Theorem 1.45. Let a € (0,2]. If Y is a non-degenerate a-stable random variable,

then its characteristic function @y is of the form
s T ,
vy (z) = exp [ - c\z|a<1 — if3(sign z) tan 7) + m-z} for a #1, (1.40)

2
oy (z) = exp [ — |z (1 + 13— (sign z) log |z|) + Z'TZi| for a =1, (1.41)

T
with ¢ > 0, B € [-1,1] and T € R. Here c,3 and T are uniquely determined by Y .'*
Conversely, for every ¢ >0, 3 € [—1,1] and 7 € R, there is a non-degenerate a-stable

random variable Y satisfying (1.40) or (1.41).

Example 1.46. When a = 2, the characteristic function in (1.40) becomes ¢y (2) =
exp{—cz® + i7z}. This is the characteristic function of a Gaussian random variable

with mean 7 and variance 2c.

Remark 1.47. The representations of the characteristic function of a stable distri-
bution in the Lévy-Khintchine representation (1.37) and relations (1.40) and (1.41)
are connected in the following way. From Theorem 1.45 we know that the charac-
teristic function of a non-degenerate stable random variable is characterized by four
parameters

a€l0,2], ¢c>0, ge[-1,1], T € R.

The characteristic triple (a, v, b) of an a-stable random variable for a € (0,2) is then

given by

a=0, v(dx)= (Cll(o,oo)(x) + cgl(,oop)(x)) ]m\_l_ada: and b=71—d,

113 is irrelevant when a = 2, and in this case we take 5 = 0.
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where

—c(1 —c(1—
(1) a€(0,1): = ﬁ, Cy = ﬁ, d= —f‘xlglxu(d:c);

COs 5

(2) a=1: ¢ = —C(l::ﬁ), Cy = —C(I;B), d=(c; — @)(ffo Sirngr dr + fol —Sinfz_r dr);

—c(1 —c(1—
3) e (1,2): a1 = et ey = %, d= f‘x|>1xu(dx)

2I'(—«) cos 75 5

(see Lemma 2 in Feller [32, p. 541] and the computations in Sato [63, p. 84, 85]). The

characteristic triple of a 2-stable random variable is of the form (2¢, 0, 7).

Definition 1.48. A Lévy process X = {X; : t > 0} is called a-stable if the random

variable X, is a-stable.

Remark 1.49. If in relation (1.39) we have b, = 0, then the random variable Y is
said to have a strictly stable distribution. The characteristic function of a strictly a-
stable random variable with « # 1, is given by relation (1.40) with 7 = 0, while the
characteristic function of a strictly 1-stable random variable is given by relation (1.41)

with 5 = 0 (see Property 1.2.6 and Property 1.2.8 in Samorodnitsky and Taqqu [62]).






Chapter 2

Functional limit theorem with M/,
convergence

In this chapter we prove the main result of this thesis, namely the functional limit
theorem for regularly varying random processes under weak dependence, the anti-
clustering condition AC(a,), a condition on the tail process and an additional technical
condition for the case when « € [1,2), where « is the index of regular variation of
the random process. The convergence in this theorem will be given with respect to

Skorohod’s M; topology.

2.1 Space D|0,1] and Skorohod’s J; and M; metrics

Since the stochastic process that we are going to study have discontinuities, for the
underlying function space of sample paths of the stochastic processes we choose the
space D0, 1] of all right-continuous real valued functions with left limits defined on
[0,1]. The space D|0,1] is also known as the space of cadlag functions.! The space
C10, 1] of all continuous real valued functions on [0, 1] is clearly a subset of D[0, 1]. The

well known and mostly used metric on C|0, 1] is the uniform metric defined by

d(z,y) = |z = yllpy = Sl[lp] lz(t) —y(t)|, =z,yeCl0,1].
tel0,1

1Cadlag is an acronym for the French continue a droite, limites & gauche.

49
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While this metric works well on C[0, 1], it causes problems on D[0, 1].

Example 2.1. Define

Tn(t) =1p1.1)(8), @) =1,

for n > 3 and t € [0,1]. Then for every n > 3,

x (0] x(t)

|

N =
Nl ¢ — — — — — — — — —
+
S
Nl g — — — — — — — —

Figure 2.1: Plots of the functions x, and x.

11 11
2 n\ S ~ ] s a = 17
d(wn, x) > |2 (2 + 2n> x(z + 2n>‘

which implies that the sequence (z,) does not converge to = in the uniform metric.

We want to have a metric in which (x,,) converges to .

The uniform metric allows uniformly small perturbations of the space coordinate,
but not of the time coordinate. So we need a new metric which allows also small
perturbations of the time scale. The metric we are looking for was introduced by
Skorohod [64] and is defined in the following way. Let A be the set of strictly increasing
continuous functions A: [0, 1] — [0, 1] such that A(0) =0 and A(1) =1, and let e € A

be the identity map on [0,1], i.e. e(t) =t for all ¢ € [0,1]. For z,y € D[0,1] define

dy(z,y) = nf{[[z o A —ylloa V [A —ellpy - A € A},
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where s V t denotes max{s,t}. Then d;, is a metric on DI0, 1] (see Billingsley [12, p.
111]) and is called the (Skorohod) Jy metric. Some simple properties of the metric d,

are collected in the following proposition (for a proof see Resnick [60, p. 47]).
Proposition 2.2. The following statements hold.

1. For a sequence of functions (zn)n>0 in D|[0,1] it holds that dj, (xy,x0) — 0 if and

only if there ezists a sequence of functions (\,) in A such that, as n — oo,

[An = ellpy =0 and [z 0 Ay = 2ollo) — 0.

2. dj (x,y) < ||z =yl for all z,y € D[0,1].

3. If dy,(xp,x0) — 0 as n — oo, for x, € D[0,1],n > 0, then for every continuity

point t € [0,1] of zo it holds that z,(t) — zo(t) as n — oco.
4. If dj, (2, 29) = 00 as n — oo and xg € C[0,1], then ||z, — xo|jp,1) — O.

The space D[0, 1] endowed with the J; metric is a separable metric space, but it is

not complete since the sequence (z,,) defined by

is a Cauchy sequence in the metric d;,, but it is not convergent. For details we refer to
Billingsley [12], where is also given a metric, topologically equivalent to dj, (i.e. gives

the same topology as d;, ), under which D[0, 1] is complete.

Example 2.3. Recall the functions defined in Example 2.1. For every n > 3 put
o { s+ 1) 1)
(1-2)t+2, tel; 1]
Then A, € A, and since ||\, — e[|y = n~" and ||z, o A, — z[[jp.1) = 0, by the first

statement in Proposition 2.2 it follows that d;, (z,,z) — 0 as n — oco. Therefore the

sequence (z,,) converges to x in the J; metric.
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P U

Nl — — — — —

Figure 2.2: Plots of the functions X\, and e.

The J; metric will be useful in the next chapter when we shall study the i.i.d.
case and the isolated extremes case. Roughly speaking, in these cases any jump in the
limiting process will be approached by one jump in the converging sequence. But when
the limiting jump is approached in more then one jump in the converging sequence,
then the J; metric does not work well, and we have to find a more suitable metric.

For x € D[0, 1] the completed graph of z is the set
I, ={(tz2) €[0,1] xR:z=Ax(t—) + (1 — N)z(t) for some A € [0, 1]},

where z(t—) is the left limit of x at ¢. Besides the points of the graph {(¢,z(¢)) :
t € [0,1]}, the completed graph of x also contains the vertical line segments joining
(t,z(t)) and (t,z(t—)) for all discontinuity points ¢ of z. We define an order on the
graph T', by saying that (¢1,21) < (t2,29) if either (i) t; < ty or (ii) {; = t9 and
|x(t1—) — 21| < |z(ta—) — 22]. A parametric representation of the completed graph
', is a continuous nondecreasing function (r,u) mapping [0, 1] onto T',, with r being
the time component and u being the spatial component. Let II(x) denote the set of

parametric representations of the graph I',. For z1, x5 € D[0, 1] define

dar, (21, 22) = f{|ry = rafloy V [Jur — wallp,y = (i, wi) € T(s),i = 1,2},
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\/\
=

Figure 2.3: A function in DI[0,1] and its completed graph.

Then dyy, is a metric on D[0,1] (see Theorem 12.3.1 in Whitt [69]) and is called the
(Skorohod) My metric.

The J; and M; metrics are related by the following inequality
dar, (,9) < dy(2,y), .y € D[0,1] (2.1)

(see for instance Theorem 6.3.2 in Whitt [68]). The main properties of the M; metric
which we shall use later on are given in the following two results (for a proof see

Corollary 12.5.1 and Corollary 12.7.1 in Whitt [69]).

Proposition 2.4. If x, € D[0,1] is a monotone function for each n € N, then
dy, (Tn,x) — 0 for x € D0, 1] if and only if x,(t) — x(t) for allt in a dense subset of

[0, 1] including O and 1.
Let D, denote the set of discontinuities of = € D|0, 1], i.e.
D, ={t e (0,1]: z(t—) # z(t)}.

Proposition 2.5. Letx,y, x,,y, € D[0,1], n € N. Ifdy, (2, ) — 0 and dpr, (Y, y) —
0 asn — oo, and

D,ND, =0,
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then dpr, (zp, + Yn,x +y) — 0 as n — oo.

Example 2.6. Define

(@) +1p @), y(t) =1 (),

3=

1
2

for n > 3 and t € [0, 1]. Then little calculations yield d;, (y,,y) = 1/2 for every n > 3,
showing that the sequence (y,) does not converge to y in the J; metric. But things

change if we use the M; metric. For the following parametric representations (7, u) of

yn(t) A y(t) A
1 r— 1 —
| | | |
| | | |
| | | |
| | | |
1 | | | |
Py t I : : :
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | I
o 11 1 1t o 111 1
2°n 2 2'n 2

Figure 2.4: Plots of the functions y, and y.

Iy and (7, u,) of ', , defined by

rs) = Dhon(s) + 5l 21 ()

) = 55— ) g+ (5 - taae) + (5 + 3 e
+ %1(2 4(s) + = 31(%11(3%

u(s) = unls) = 2o g 5+ 5l gy(5) + 20 () + L (),
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we have ||, — 7|

01 =n ' and ||u, —ul|p1 = 0. Therefore dar, (Y5, y) — 0 as n — oo.

Nl_L
f
SI= NI=

N | =

Figure 2.5: Plots of parametric representations (r,u) of I'y and (r,,u,) of I'y,.

Remark 2.7. The M; topology (induced by Skorohod’s M; metric) was introduced
in Skorohod [64], along with J;, Jo and M, topologies. Topology J; is the most used
Skorohod’s topology. But in this thesis the M; topology will be used in most of
considerations. It is straightforward to see that all these topologies are weaker then
the uniform topology, but stronger then the L, topologies on D[0, 1] induced by the

norms

e = ([ totoear)

for p > 1. The last statement follows from the fact that convergence in all four of

Skorohod’s topologies implies pointwise convergence on the set of all continuity points
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of the limiting function, and since this set contains all except at most countably many
points from [0, 1], we obtain convergence in L, topology.
For a more detailed treatment of the space D]0,1] and Skorohod’s topologies we

refer to Whitt [69].

2.2 Summation functional

Fix an arbitrary u > 0. The proof of our main theorem depends on the continuity

properties of the summation functional
Y™ M,([0,1] x E,) — DI0,1]

defined by
¢(“) ( Z 5(tz,l‘1)) (t> = Z ZT; 1{u<\xi\<oo}7 te [07 1]

t; <t

Observe that ™ is well defined because [0,1] x E, is a compact set. In the sequel
the space M,([0,1] x E,) is equipped with the vague topology and D0, 1] is equipped
with the M; topology.

The summation functional ¥ is not continuous on the set [0, 1] x E,, (see Example

2.9 below), but we will show that it is continuous on the set A = A; N Ay, where
A= {n € My([0,1] x E,) : n({0,1} x E,) = ([0, 1] x {£o0, £u}) = 0},

Ay = {n € M,([0,1]xE,) : n({t}x[u,oc]) - n({t}x[—o00, —u]) = 0 for all t € [0,1]}.

Observe that the elements of Ay have the property that atoms with the same time

coordinate are all on the same side of the space axis.

Lemma 2.8. The summation functional v : M,([0,1] x E,) — D[0, 1] is continuous

on the set A, when D[0,1] is endowed with Skorohod’s My topology.
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Figure 2.6: An example of a point process belonging to the set A.

Proof. Take an arbitrary n € A and suppose that 1, — 7 in M,([0,1] x E,) as n —
oo. We will show that ¢ (n,) — ¢®(n) in D0, 1] according to the M; topology.
By Proposition 2.4, M; convergence for monotone functions amounts to pointwise
convergence in a dense subset of points plus convergence at the endpoints. Our proof
is based on an extension of this criterion to piecewise monotone functions. This cut-
and-paste approach is justified in view of Lemma 12.9.2 in Whitt [69], provided that
the limit function is continuous at the cutting points.

Since the set [0,1] x E, is compact, there exists a nonnegative integer k = k()
such that

n([0,1] x E,) = k < oo.

By assumptions, 7 does not have any atoms on the border of the set [0, 1] x E,. As a
consequence ofLemma 1.29 there exists a positive integer ny such that for all n > ng
it holds that

n,([0,1] x E,) = k.

If £ = 0, there is nothing to prove, so assume k > 1 and let (¢;,z;) fori = 1,... k,

be the atoms of i in [0,1] x E,. By the same lemma, the k atoms (£, z{™

7 ? (2

) of n,, in
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0, 1] x E, (for n > ny) can be labeled in such a way that for every i = 1,..., k we have

(tz(”), xﬁ”)) — (t;, 2;), as n — oQ.

In particular, for any 6 > 0 we can find a positive integer ns such that for all n > ng,

([0, 1] x E) =k,

" —t;] <6 and |2 — x| <6, fori=1,... k. (2.2)

Let the sequence

O<n<n<...<7,<1

be such that the sets {7,...,7,} and {¢1,...,t;} coincide. Since 7 can have several
atoms with the same time coordinate, it always holds that p < k. Put 70 =0, 741 = 1
and take

1
0<r<=min |r — 7l
<i<

0\\

For any ¢t € [0,1]\ {m,...,7,} we can find ¢ € (0,u) such that

d<r and ¢ < min |t —T7.
1<i<p

Then relation (2.2), for n > ns, implies that tl(”) < t is equivalent to ¢; < t, and we

obtain

POELED P

tg")gt t; <t

[0 () () — 4 () (8)] = <> o< k.

Lt

Therefore
Jim [ () (8) = 0 ) (8)] < kS,

and if we let § — 0, it follows that ¢ (n,)(t) — ™ (n)(t) as n — oo. Put

Ui:Ti—i-?", ze{l,,p}
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For any § < uAr, relation (2.2) and the fact that n € A imply that the functions 1) ()
and 1 (n,) (n > ns) are monotone on each of the intervals [0, v], [v1,va), ..., [vp, 1].
Now a combination of Proposition 2.4 and Lemma 12.9.2 in Whitt [69] yield that
dar, (0™ (0,), v ™ (n)) — 0 as n — oo. The application of Lemma 12.9.2 is justified
by continuity of ¥(*(n) in the boundary points vy, ...,v,. We conclude that ¥ is

continuous at 7). O

Example 2.9. This example shows that we can not replace the set A in Lemma 2.8

by the set M,([0,1] x E,). Fix u > 0 and let
T =03,20) T 0342, 2wy 723
Then 71, — 1 as n — 0o, where
n= (5(%7%) + 5(%7_%).

Clearly n € M,([0,1] x E,) (but i ¢ A). It is straightforward to obtain ¥ (n,)(t) =
2u - 1[%7%+%)(7§) and 1 (n)(t) = 0 for any ¢ € [0, 1]. For all parametric representations

(Th, vp) € (™ (n,)) and (r,v) € (¢ ™ (n)) we have
v, — vl = 2u.

Therefore dyy, (™ (n,), 9™ (1)) = 2u for all n > 3, yielding that ¥ (n,) does not
converge to 1) (n) as n — oo. Hence Y™ is not continuous at 7, and we conclude

that 1 is not continuous on the set [0, 1] x E,.

The following lemma claims that under a certain assumption on the tail process,

the point process N defined in Theorem 1.36 almost surely belongs to the set A.

Lemma 2.10. Assume that with probability one, the tail process (Y;)iez in (1.12) has

no two values of the opposite sign. Then P(N®™ € A) = 1.
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Proof. From the definition of the tail process (Y;);cz and Definition 1.5, we have for
all j € Z and r € (0,1),
nP(X;/a, € (1—r,1+7), | Xo| > ay)

PY;e(l—-r,1+7r)) = lim

n—oo nP(| Xo| > an)
< lim nP(X;/a, € (1—r,1+7))
n—o0 TLP(|X0| > an)

= u((l=r14+7r)).

Now letting r — 0 and taking into account the form of the limiting measure p we

obtain that
P(Y; =1) <p({1}) =0,
i.e. P(Y; = 1) = 0. Similarly it holds that P(Y; = —1) = 0. Therefore P(Y; = £1) =0

for every j, and this implies

P(Y a1 =0) = P((WY #21}) = 1-P(Uy; = £13)
> 1-) P(Y;=+1)=1,

ie P( >0y, ({£1}) = 0) = 1. From the definition of the processes >_;0z; in Theorem
1.36, it follows that P( >0z, ({£1}) = 0) = 1 for every . From here we immediately
conclude that P(N®([0,1] x {£u}) = 0) = 1. From the definition of the tail process
(Y:)iez we know that P(Y; = +oo) = 0 for any ¢ € Z. Therefore we obtain that
P(N®([0,1] x {£o0}) = 0) = 1. Together with the fact that P(}_, 5Ti(u)({0, 1}) =
0) = 1, this implies P(N®™ € A;) = 1.

Further, the assumption that with probability one the tail process (Y;);ez has no

two values of the opposite sign yields P(N™ € A,) = 1. O

Remark 2.11. It is straightforward to see that the conclusion of Lemma 2.10 holds

if we replace the point process N® by N (“)‘[O lxEL”
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Remark 2.12. Taking in account Lemma 2.8 and Lemma 2.10, we see that the sum-

mation functional ¥ is almost surely continuous with respect to the distribution of

N,

The following proposition gives some sufficient conditions under which a Poisson
process with state space [0,1] x E, almost surely belongs to the set A. The proof of

this result is a slight modification of the considerations in Resnick [60, p. 222].

Proposition 2.13. Suppose N is a Poisson process with mean measure LEB X k,

where LEB is the Lebesgue measure on [0,1] and k is a Radon measure on E, such

that k({£u, £oo}) =0. Then P(N € A) = 1.

Proof. First, we have that

LEB x x({0} x E,) = LEB({0}) - (E,) = 0,

since kK(E,) < k(E,) < oo. Taking into account the definition of the Poisson process

(see Example 1.20), this implies that
P(N({0} x E,) =0) = 1.
Similarly, we have P(N({1} x E,) = 0) = 1. Further, since
LEB x ([0, 1] x {#u, £oo0}) = LEB([0, 1]) - k({£u, +o0}) = 0,

it follows that P(N ([0, 1] x {£u,+o0}) =0) = 1. Hence P(N € A;) = 1.
One can write N in the form

3

N i Z 5(T¢,Ji)7

i=1
where ¢ is a Poisson random variable with parameter LEB x ([0,1] x E,), {T;, i >

1} are ii.d. uniformly distributed on (0,1), {J;, ¢ > 1} are i.i.d. with distribution



62 CHAPTER 2. FUNCTIONAL LIMIT THEOREM WITH ), CONVERGENCE

k(E,N-)/k(E,), and ¢ is independent of {(T}, J;), i = 1} (see Resnick [60, p. 143, 147)).

Then
P(some vertical line contains two points of N) = P< U {T; = TJ}>
ENAANS
< ) PG=T)=0
1<i<j<oo
This suffices to conclude that P(N € Ay) = 1. O

2.3 Main theorem

Let (X,,) be a strictly stationary sequence of random variables, jointly regularly varying
with index o € (0,2) and tail process (Y;)icz. The theorem below gives conditions
under which its partial sum process satisfies a nonstandard functional limit theorem
with a non-Gaussian a—stable Lévy process as a limit. Recall that the distribution of
a Lévy process V() is characterized by its characteristic triple, i.e. the characteristic
triple (a,v,b) of the infinitely divisible distribution of V' (1). The description of the
characteristic triple of the limit process will be in terms of the measures v (u > 0)
on E defined for z > 0 by

v (z,00] = UQP(uZYi Lys1y > @, sup [Yi] < 1)7
i<—1

>0

(2.3)
v[=00, —a) =u Plud ¥ilyypy < —u, sup || < 1)'
= i<—1

In the case a € [1,2), we will need to assume that the contribution of the smaller

increments of the partial sum process is close to its expectation.

Condition 2.14. For all § > 0,

k
X; X;
2 (al L —E(a—nl iiz"@}))

> =0.

lim lim sup P | max
ul0 pn oo 1<k<n
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Condition 2.14 holds for instance if (X,,), is p-mixing at a certain rate; see Propo-
sition 2.19 in Section 2.4, where some variations of the following theorem are discussed

as well.

Theorem 2.15. Let (X,))nen be a strictly stationary sequence of random wvariables,
reqularly varying with index o € (0,2), and such that its tail process (Y;)iez almost
surely has no two values of the opposite sign. Suppose that the mizing condition A'(ay,)
and the anti-clustering condition AC(a,) hold, where (a,) is a sequence of positive real
numbers such that nP(|X1| > a,) — 1 asn — oo. If a € [1,2), also suppose that
Condition 2.14 holds. Then the partial sum stochastic process

[nt]

0 :Zf—:— [ntJE(f—:l{glgl}), te 0,1, (2.4)
k=1 n

satisfies

in D|0, 1] endowed with the M, topology, where V() is an a—stable Lévy process with

characteristic triple (0,v,b), where

b = lim [/ x v (dz) — / xu(dx)}
u—0 {z:u<|z|<1} {z:u<|z|<1}

and v is the vague limit of v™ asw | 0, with v™ as in (2.3) and p as in (1.8).

Proof. Note that from Theorem 1.36 and the fact that |Y,| — 0 almost surely as

|n| — oo, the random variables

UZZij1{|Zij|>l}

J

are i.i.d. and almost surely finite. Define

()
N = Z(s(Tf")vqu Zijl{iz;;1>13)
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Then by Proposition 5.3 in Resnick [60], N® ig a Poisson process with mean measure
fu “LEB x F®, (2.5)

where F® is the distribution of the random variable uy. i Z1j1§12,;>13- But for 0 <
s <t < 1land x > 0, using the fact that the distribution of }°; 0z, is equal to
the one of ). dy, conditionally on the event {sup,._[Y;| < 1} and the fact that

P(sup;<_ [Yi] < 1) =0 > 0 (see Section 1.6), we have

fu “LEB x F® x (x,00]) = Ou(t — s)F“((x, 00])

= t — S P Z ZlJ1{|Zlg\>1} > l‘)

(Is,
(

= t—sP( ZY1W|>1}>Q;
(u

P

sup Yi| < 1)

Z Yilgy,s1y > @, supig_ |Y] < 1)
P(Supi<—1 ;| <1)
=u "t - S)P(uzyjl{mx} >z, sup Y] < 1)
j i<—1
= LEB x v ([s,t] x (z,00]).

=0u %t —s)

The same can be done for the sets of the form [s,t] X [—00, —x), so that the mean
measure in (2.5) is equal to LEB x v,

Consider now

SO o) () = 3 ey,

i/n<-
which by Corollary 1.38, Lemma 2.8, Lemma 2.10 (in fact Remark 2.11) and the

continuous mapping theorem (see for instance Theorem 3.1 in Resnick [60]) converges

in distribution in DI0, 1] under the M; metric to

w(u)(N(u)’[o,l]x]Eu)(') - Z Zuzij1{|zij|>1}'

TZ_(“>< .
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Let
V(W) —
N = Z O, 1)

be a Poisson process with mean measure LEB x v(*). Since
u u u A7 u d u AT u
P (N )’[0,1]><Eu) = ¢! )(N( )) £ )(N( ))7

we obtain

[n-]

u X d (u u

Lg>(.);zza—n1 ?M}eﬂ (=Y K", asn— o, (2.6)
i=1 " Ti< -

in D[0,1] under the M; metric. From relation (1.4) (in the one-dimensional case),

Proposition 1.2 and Theorem 1.6 (iii) we have, for any ¢ € [0, 1], as n — o0,

X nt X
LntJE(&_l 1{u<X1|<1}) - %/ P (_1 © dx)
n an = {z:u<]z|<1} an

— t/ x p(dx). (2.7)
{z 1 u<]z|<1}

This convergence is uniform in ¢ and hence

Ln~jE(f—:1{u<w<1}> ~ (')/{m:uqﬂ@}m”(d@ (2.8)

in the M; metric on DI0, 1].

Put

a, = / x p(dx),
{z:u<|z|<1}

and define the function z®: [0,1] — R by (" (¢) = ta,. The function #(*) is continu-
ous, and hence it belongs to D[0, 1]. Define now h: D[0,1] — D[0, 1] by h(z) = z—2™.
An application of Proposition 2.5 yields that A is a continuous function. Hence by the

continuous mapping theorem we obtain h(LgL“)) 4, h(L™), i.e.

LW — g L p) g agn — oo, (2.9)

n
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in D[0, 1] under the M; metric. Define

]
X X
V() = Z xis,) T (a—ll{u<|x1|<1

i=1 an

)

VO = 100 =) = KO () [ i)

i<

Next, we show that, for any ¢ > 0,

lim Pldy, (L — 2™ VW) > ] = 0. (2.10)

n—oo
Since Skorohod’s M; metric on D[0, 1] is bounded above by the uniform metric on
D0, 1] (see the second statement in Proposition 2.2 and relation (2.1)) and ||z | —x| < 1

for every x € R, we have

Plda (LY — 2™, Vi) > 4]

X,
P[Sélg <Zl{u<' <1}>_w“ > 4]
)

< Pl s 1) =il B2 )| > 5]
X1 )

Pl sup I -[nE( 321 )—af>3]
" Oigglw B O VA

NN

HE(%{<X1<1}>\ ] || ( Sy my)

From this, using relation (2.7) (with ¢ = 1), we obtain

>3l

lim sup P[dyy, (LW — 2, VW) > §] = 0.

Therefore (2.10) holds. Now from relations (2.9), (2.10) and Slutsky’s theorem (see for

instance Theorem 3.4 in Resnick [60]), we obtain

n
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in D[0,1] under the M; metric. The limit in (2.11) can be rewritten as

STEY () /{ 20 (da)

z:u<|z|<1}
+()(/ xv(“)(dx)—/ xu(dm)).
{z1u<|z|<1} {z 1 u<]z|<1}

Note that the first two terms represent a Lévy—Ito representation of the Lévy process
with characteristic triple (0,2, 0), see Resnick [60, p. 150]. The remaining term is
just a linear function of the form ¢ — tb,. As a consequence, the process V® is a

Lévy process for each u < 1, with characteristic triple (0, v b,), where

b, = / v (dz) — / x p(dz).
{zu<|z|<1} {z 1 u<|z|<1}

The next step is to show that V() (1) converges to an a-stable random variable
as u — 0. Here we shall use some facts from the proof of Theorem 3.1 in Davis and
Hsing [24]. First we have to show that all conditions from this theorem hold. Since the
random process (X,,) is regularly varying with index « € (0, 2), and conditions A’(a,,)
and AC(ay,) hold, from Theorem 2.7 in Davis and Hsing [24] it follows that the point
process NN, as defined in Section 1.6, converges to some N*. From Proposition 4.2 in
Basrak and Segers [10] it follows that the case N* = o can never occur. Hence relation
(3.1) in Davis and Hsing [24] holds. Condition (3.2) in [24] holds, since it is implied
by Condition 2.14.

Theorem 12.5.1 (iv) in Whitt [69] implies that the function 7: D[0, 1] — R defined
by 7(x) = x(1) is continuous. Hence, by (2.11) and the continuous mapping theorem,

as n — 0o,

V(1) L v (1), (2.12)

Now we distinguish two cases:
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Case 1. a € (0,1). From relation (3.4) in [24] we have, as n — oo,

u X1 d .
V(1) + nE(E1{u<§i,<1}> <7 (N),

where T, is the mapping from M,(E) into R defined by

=1 =1

This together with (2.7) (with ¢t = 1), by Corollary 2 in Chow and Teicher [20, p. 272],
imply

V(1) 4, T.(N™) — / x pu(dx).
{zu<|z|<1}

Hence, from (2.12) we see that

y 1) L, (v — / 2 p(da).

{zu<|z|<1}

By relation (3.5) in [24], T,(N*) 4, To(N*) as u — 0, and the limit is an a-stable

random variable. From the representation of the measure p in (1.8) we obtain

« o
lim xp(dx) = (p—q) lim(1 —u'™) = (p—q) :
u—0 {z:u<|z|<1} ) ( -« UHO( ) ( -«
Now a new application of Corollary 2 in [20] implies, as u — 0,
Ve Lo, - [ 2 u(da) 5 Ty(N*) = (p — g) .
{zu<]z|<1} -«

Since Ty(N*) is a-stable, the random variable To(N*) — (p — ¢)t2 is also a-stable
(this fact is a consequence of the representation of a stable random variable given in
Theorem 1.45). Thus V(1) converges to an a-stable random variable.

Case 2. « € [1,2). From relation (3.8) in [24], we have, as n — oo,

Ve S o) - [ 2 u(d).

{zu<|z|<1}
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Hence, from (2.12) we see that
VO (1) L 7, (V) _/ v u(da).
{z:u<|z|<1}

By relation (3.9) in [24],

Tu(N™) — / x pu(dx) <, some S, as u — 0,
{z:u<|z|<1}

where the limit is an a-stable random variable. Thus V(1) 4.
In both cases we conclude that V(1) converges, as u — 0, to an a-stable random
variable. Since every stable random variable is infinitely divisible, by Theorem 13.12

in Kallenberg [40], there exists a Lévy process V(-) such that

v (1) L V).

v 2

Hence by Theorem 13.17 in [40], there exist some processes V) = V®) with

limP( sup [V (t) = V()| > 5) =0,

u—0 0<t<1
for every 6 > 0. Since the M; metric on D[0, 1] is bounded above by the uniform

metric on D[0, 1], it follows that

lim P(dy, (V®, V) > 6) = 0,

u—0

and this immediately implies V®)(-) 4, V() (see for instance Theorem 3.4 in Resnick
[60]), i.e.
V()L V(), asu—0, (2.13)

in D[0,1] with the M; metric. The process V(-) has characteristic triple (0,v,b),
where v is the vague limit of v as v — 0 and b = lim,_.o by, see Theorem 13.14
in Kallenberg [40]. Since the random variable V(1) has an a-stable distribution, it

follows that the process V'(-) is a—stable.
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If we show that

lim lim sup P[dy, (V, V,,) > 6] = 0

ul0 pooco
for any 0 > 0, then from (2.11), (2.13) and Theorem 3.5 in Resnick [60] we will have,

as n — 00,

V() = V()

in D[0, 1] with the M; metric. Once again, since the M; metric on D[0, 1] is bounded

above by the uniform metric on DJ0, 1], it suffices to show that

hmhmsupP( sup |V (1) — V,(t)] > 5> = 0. (2.14)

ul0  pooo 0<t<1

Recalling the definitions, we have

lim lim supP( sup [V () =V, (t)] > 5)

ul0  pooco 0<t<1
[nt]
X
;glmsu}—w( M })
|nt] A
z{& E(X )}
i1 Ay

>

= limlimsup P | sup
ul0  pooo L 0<t<1

= limlimsup P | sup
ul0  pooo | 0<t<1

= lim limsup P| max
ul0 pn—oo | 1<kgn

Therefore we have to show

k

X; X,
Z{a—l{xil@} —E(a—l{xil@ >H >5} =0. (2.15)
i=1 n ap X n ap X

For a € [1,2) this relation is simply Condition 2.14. Therefore it remains to show

lim lim sup P | max
uld  peo | 1<k<n

(2.15) for the case when o € (0,1). Hence assume « € (0,1). For an arbitrary (and

Z{ e Gt Rl

fixed) d > 0 define

1<k<n

I(u,n) { max
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Using stationarity and Chebyshev’s inequality we get the bound

X X
e ~E (G e )|

< 6 IE{Z a—nl Ifggu}_E(El 'Xn@})H
e
< nE( Pt

i=1
P(1X:] > uan) E(X1|1gxiicuany)
P(|X1| > a,) wa,P(|X1]| > ua,)’

n

I(u,n) < P{Z

i=1

= 20w -nP(|Xy| > a,) - (2.16)

Since X is a regularly varying random variable with index «, an application of Propo-

sition 1.8 gives
P(|X1| > uay,)
—u o,
P(1X1] > an)

as n — 0o. By Theorem 1.12

i PUX icuany) @
im = '
n—oo ua, P(|X1| > ua,) 1—a«

Thus from (2.16), taking into account the fact that nP(|X1| > a,,) — 1 as n — oo, we

get

a ul—a

limsup I (u, n) < 25

n—oo 1—04

Letting u — 0, since 1 — a > 0, we finally obtain

lim lim sup I (u, n) = 0,

ul0  poeo

and relation (2.15) holds. Therefore V,, L Vasn— ooin D[0,1] endowed with the

M topology. O]

2.4 Discussion

In this section we revisit the conditions and the conclusions of Theorem 2.15 and

provide some additional insights. Since the measure v is the Lévy measure of a stable
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random variable V' (1), it can be represented in the form given in Remark 1.47 (see
Remark 2.16 below). In case a € (0, 1), the centering function in the definition of V,
can be removed (see Remark 2.17 below). In the other case, a € [1,2), the centering
function cannot be omitted, and one way of checking Condition 2.14 is via p-—mixing
as we show in Proposition 2.19. Finally, in Theorem 2.15 we can not replace the M,

topology by the J; topology (see Remark 2.20 below).
Remark 2.16. The Lévy measure v satisfies the scaling property
v(sB) = s “v(B), s> 0, B € B(E),
(see Theorem 1.44). In particular, as in Remark 1.47, v can be written as
v(dz) = (€1 1(0,00)(2) + 2 L(—oo0)(2)) 2] " da,

for some nonnegative constants ¢; and ¢y, and therefore v({z}) = 0 for every z € E.
Thus, from Theorem 1.4 and the fact that the spectral process (0;);cz is independent

of |Yg| (see Theorem 3.1 in Basrak and Segers [10]), we have

a = av(l,o0] = limav®(1, 0]

u—0

= limau_aP<uZY¢ Liyvis1y > 1, Supl Y| < 1)
i<—

u—0
i>0
= limau™® / P(qu@i Lire,>13 > 1, sup r|0;] < 1) d(—r™%)
u—0 1 0 i<—1
= lima / P(Z 70 1o, >y > 1, sup r[6;| < u) d(—r~%),
vt Ju >0 is—1

and similarly

cy = lin(l)a / P(Zr@j Lire,>uy < —1, 1S<UP1 r1©;] < u> d(—r=®).

U—
i>0
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Remark 2.17. If o € (0,1), the centering function in the definition of the stochastic
process V,,(-) can be removed and this removing affects the characteristic triple of the
limiting process in the way we describe here.

First, note that for arbitrary random variable X and x > 0 it holds
X1yxicoy = X Lixvcay — X Lix-<ap,

where X = max{X,0} and X~ = max{—X, 0} are the positive and negative parts of
X.

From relation (1.7) and the fact that the sequence (a,,) is chosen such that nP(|.X;| >
a,) — 1, we obtain, as n — 00,

P(X, > an
WP(XF > a,) = LKL> @)

= 2\ ) pOX > a,) — p,
P<|X1|>6Ln) n(’ 1’ a)—>p

and similarly nP(X; > a,) — ¢ =1 — p. We distinguish two cases:
Case 1. p € (0,1). Since X, is regularly varying with index o and p,q > 0, X;" and
X7 are also regularly varying with index a (we can see this through the statement in

Remark 1.10 equivalent to regular variation). Therefore by Theorem 1.12, as n — oo,

X X7 Xy
”E(zl }) = ”E(a—nl }) ‘”E(a—nl Xy

E(XT L x+ <any) B(XT 1ix-cony)
a,P(X{ > a,) a,P(X] > a,)

= nP(X{ > ay)- —nP(Xy > ay,) -

(67

= (r-a7—

Case 2. p=0or 1. Assume p = 1 (the case when p = 0 can be treated similarly and is

here omitted). Then X is regularly varying with index o and therefore it holds that

h a o
nE(—1,+ —p = , as n — o0.
ay, ﬁgl} 1l—a 11—«



74 CHAPTER 2. FUNCTIONAL LIMIT THEOREM WITH M; CONVERGENCE

This and Theorem 1.12 imply that, as n — oo,

) = ) G )

— — =0.

Therefore, as n — oo,

X, B X; X7
() = B ) B )

« o

T 0=@-4d

1—a

In both cases we conclude that, as n — oo,

L R O

in the M; metric on DI0, 1], which leads to

[n-]
S 2Ly (- g —

a 11—«
k=1 "

in DJ0,1] endowed with the M; topology. The characteristic triple of the limiting

process is therefore (0,v,b) with o' =b+ (p — q)a /(1 — ).

Example 2.18. Consider the process
Xn:Zn_Zn—h HEZ,

where (Z,,) is an i.i.d. sequence of random variables with common distribution given
by the probability density function
fa) (a/2)]a] =Y if 2| > 1
xr) =
0 otherwise,

where « € (0,1). Then the process (X,,) is regularly varying with index a and

% Xi  Ziy—Zo sai
_——
(079

k=1

J
0. 2.17
- (2.17)
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But since, as is known, sup,c(g 1) Z|nt|/@n converges in distribution to a nonzero limit
(see Proposition 7.2 in Resnick [60]) and the functional sup,¢(y ;) is continuous in the
M, topology (see Skorohod [65]), the "fidi” convergence in (2.17) can not be replaced
by convergence in distribution in the M; topology. Therefore the process V() does

not converge in distribution in D|0, 1] endowed with the M; topology.

The process (X,,) belongs to a class of finite order MA processes. In Section 4.1
we will analyze these processes in detail, but let say here that the only condition in
Theorem 2.15 that (X,,) does not satisfy is the one on the tail process. Indeed, if (Y,)
is the tail process of (X,,), then a standard regular variation argument and Lemma

1.2. in Cline [21] imply

. P(X0>£E,X1 < —217>
PYy>1,Yi<-1) = 1
Bo=1M<-1 = B ="51%> 1)

li P<Z0 —Za>x,l1—Zy < —:E)
— 11m
lim su P(Zy > 2x,|Z 1| < 2,|Z:| < —x)
= limsu P(Zy > 2x,|Z 1| < 2,|Z:] < —x)
i sup D20 > 20P( 21| S 0)P(1Z] < o)
:c—>oop P(‘XO‘ > Qj)
) P(Zo > 20) P(Z|>20) P(Xo| > 20)
— 11 su . .

V

[P(|21] < @)

22741 >0.

N | =
N | —

Therefore P(Yy > 0,Y; < 0) > P(Yy, > 1,Y) < —1) > 0, i.e. the tail process (Y,,) has
two values of the opposite sign with a positive probability. The remaining conditions
from Theorem 2.15 hold (for details see Section 4.1). Thus the condition on the tail

process as given in Theorem 2.15 can not be omitted.
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Condition 2.14 is in general difficult to check. The next proposition gives one

sufficient condition for Condition 2.14 to hold.

Proposition 2.19. Let (X,,) be a strictly stationary sequence of regularly varying
random variables with index o € [1,2), and (a,) a sequence of positive real numbers

such that nP(|X1| > a,) — 1 as n — oo. If the sequence (X,,) is p-mizing with

D Pl < 00,

520

then Condition 2.14 holds.
Proof. Let § > 0 be arbitrary. As in the proof of Theorem 2.15, define

k
X; X;
g{al{ez@} —E(al{'f;<u})}

> 5] :
Then from Corollary 2.1 in Peligrad [54] we obtain

|logs 7] 2
X X
R (5 oty 1 AT C VN | ]

an X mn an X

I(u,n) = P{ max

1<k<n

for some positive constant C'. By assumption there exists a constant L > 0 such that,

for all n € N,

[logy n
exp( Z PLQJ/SJ)

Therefore

X, ?
-2
I(u,n) < CL5 nE[(Z 1{fi|<u}> :|

E(X71{x,<uan})

— L 2,2 .
CLo™u (ua,)?P(| X1| > uay,)

nP(|X1| > uay).

Now using Theorem 1.12 and the fact that X; is regularly varying (more precisely

relation (1.7)), we obtain

limsup I (u,n) < C’L5_22 a u?e.
n—oo —

Since 2 — a > 0, we find lim,, o limsup,,_,, I(u,n) = 0, yielding Condition 2.14. [
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Remark 2.20. Theorem 2.15 becomes false if we replace the M; topology by Skoro-
hod’s J; topology: for finite order MA processes with at least two nonzero coefficients,
Theorem 1 in Avram and Taqqu [3] shows that the sequence of partial sum stochastic
processes V,, cannot have a weak limit in the J; topology.

The problem in our proof if we consider the J; topology is Lemma 2.8, which in

this case does not hold. Fix v > 0 and define

Ny = (5( ,20) + 5(%,3u)7 n 2 3.

[NIES
3=

Then 7, — 1 as n — oo, where
n= 5(%’%) + (5(%’3@.
For t, =1/2 — 1/n and every A € A we have
PO () (1) =20 and () (n) 0 N)(t) € {0,5u}.

Hence || (n) o A — w(“)(nn)H[QH > 2u, and this implies dj, (v (1), ™ (n,)) = 2u
for all n > 3, yielding that 1»(*)(n,,) does not converge to 1)*)(n) as n — oo. Therefore
Y™ is not continuous at 7. Since clearly € A, we conclude that the summation
functional v : M,([0,1] x E,) — D[0, 1] is not continuous on the set A, when D[0, 1]

is endowed with Skorohod’s J; topology.






Chapter 3

J1 convergence in functional limit
theorems

In this chapter we consider functional limit theorems in which the convergence is given
with respect to Skorohod’s J; topology. This happens in the i.i.d. case, the case of
dependent random variables with isolated extremes and in the case when we do not
deal with single random variables but with blocks of consecutive random variables of

an appropriately chosen size.

3.1 The 1.1.d. case

Functional limit theorems were at first studied for independent and identically dis-
tributed random variables. Note that if (X,,),en is an i.i.d. sequence of regularly vary-
ing random variables with index « € (0, 2) such that nP(|X;| > a,,) — 1 as n — oo, for
some sequence of positive real numbers (a,,), then all conditions in Theorem 2.15 are
satisfied. Indeed from Remark 1.15 it follows that the random process (X,,) is regularly
varying with index «, while from the representation of the tail process for independent
random variables in Example 1.18 we know that it almost surely has no two values of
the opposite sign. The independence implies that (X)) is strongly mixing, which by

Proposition 1.34 further implies condition A’(a,,). Since the random variables X; are

79
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independent and identically distributed we obtain that

P( max | X;| > uay,

m<[i|<rn

X0 >uan) < 2(rm —m + DP(X| > uay)

2(r, — 1
Arp —m+1)
n

(| X1] > uay,).

From the definition of a sequence (r,) (see Definition 1.35) and the fact that X; is a

regularly varying random variable, we obtain that, as n — oo,

n - + 1 —
T and nP(|X1| > ua,) — u™ .
n
Hence
lim limsupP( n|1z|1x | X;| > uay, | | Xo| > uan) =0,
m—oo  p—oo m|i|<rn
and condition AC(a,,) holds. Since the random variables X, X5, ... are independent,

(X,) is p~mixing with p,, = 0 for every n € N. Condition 2.14 now holds by Proposition
2.19. Therefore by Theorem 2.15 we have that the partial sum stochastic process V,,
converges in distribution in DJ0, 1] endowed with the M; topology, to an a—stable Levy
process.

In this case, the M; convergence can be replaced by the J; convergence. This
stronger result is well know in the literature, see Proposition 3.4 in Resnick [58] and
Corollary 7.1 in Resnick [60]. These results are proved even in D]0,00), thus with
infinite time horizon. For completeness and to make an easier presentation of the
results in the next sections, we give here the proof of the functional limit theorem
for the i.i.d. case, but on D|0, 1] endowed with the J; topology. The proof, which we
divide in several steps, follows the arguments given in Resnick [60], and its structure is
very similar to the proof of Theorem 2.15. The first step is to establish a convergence
in distribution of a sequence of time-space point processes

N, = Zé(i/n,Xi/an)v n e N7

i=1
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similar to the one given in Theorem 1.36, with the difference that now the limiting
process will be a Poisson random measure and the convergence will take place on the

whole [0,1] x E. We start with two lemmas that will be useful in the sequel.

Lemma 3.1. If (Z,) and (T,) are two sequences of random wvariables on the same
probability space such that (Z,) converges in distribution to some random variable Z

and T, LRt 0, then Z,T, 2,0 as n — oo.

For a proof of this result see for instance Chow and Teicher [20, p. 272]. Suppose
now H: R — (a,b) is a nondecreasing function on R with range (a,b), where —oo <

a < b < oo. Define the inverse H=: (a,b) — R of H as
H™(y) = inf{s : H(s) >y}

(with the convention that the infimum of an empty set is +00). Then the following

result holds (for a proof see for instance Proposition 0.1 in Resnick [59]).

Lemma 3.2. If H,, n > 0, are nondecreasing functions on R with range (a,b) and

H,(x) — Hy(x) for all x € C(Hy), then H (y) — Hy (y) for ally € (a,b)NC(H).!

Now we are ready to describe the convergence of a sequence of point processes (INV,,).
We follow the proof of Theorem 6.3 in Resnick [60] (a different proof of this result is

given in Proposition 3.1 in Resnick [58]).

Proposition 3.3. Let (X,,) be a sequence of i.i.d. random variables such that, as

n — 0o,

nP(& c ) 2 (), (3.1)

n

where (ay) is a sequence of positive real numbers tending to oo and p is a nonzero
Radon measure on (E,B(E)). Then, as n — oo, N, % N on [0,1] x E, where N 1is
PRM(LEB x pu).

"Here C(H) denotes the set of all # € R such that H is finite and continuous at .
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Proof. From Example 1.24 (2) we know that the Laplace functional of the point process
Ny =>""10x,/a, is of the form

n

Uy (f) = (Eeff(Xl/an))ﬂ f e Ck(E).

Therefore

E[n(1 — e—f(Xl/an))] )n

\IjNﬁ (f) = (Eeif(Xl/a”))n = (1 —

_ (1 . fE(l — e—f(m))nP(Xl/an € d;l:)>n7

and this, by (3.1) and Lemma 1.3 in Durrett [29, p. 80] (note that 1 — e~/ € CE(E)),

as n — oo converges to

exp { - / (1= @) ()},

the Laplace functional of N* = PRM(u) (see Example 1.24 (3)). Theorem 1.23 now
gives

N L N*=PRM(u),  asn— oo. (3.2)

n

Suppose now Uy, ..., U, are i.i.d. random variables uniformly distributed on (0, 1)
with order statistics

Ul:n < U2:n <

N\

U?’LZ?’L?

which are independent of {X; : i =1,2,...}. Then by (3.2) and Lemma 1.25 we have
that, as n — oo,

> 0w Xufam) > PRM(LEB x pr).

i=1

But since, from the independence of {U;} and {X;}, we have that

Z 5(Ui:na Xi/an) g Z 5(Ui:Xi/‘1n)
=1 =1
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as random elements of M, (][0, 1] x E), it holds that, as n — oo,

> 6w X jan) > PRM(LEB x p0). (3.3)

i=1

If we prove that, as n — oo,

n n p
dy < > i xijans D 5(Ui:n,xi/an)> — 0, (3.4)
=1 =1

where d, is the metric given in (1.3), this and (3.3), by Slutsky’s Theorem (see for
instance Theorem 3.4 in Resnick [60]), will give that, as n — oo,
- d

> 8/n, xu/an) — PRM(LEB x p),

i=1
ie. N, LR N, and this proof will be completed.

By Proposition 1.26, for proving relation (3.4), it is enough to prove that for f €

CE([0,1] X E), as n — oo,

Lo (3.5)

(n - if( Ui )|

Suppose the compact support of f is contained in [0, 1] x Es for some § > 0. Then the

difference in (3.5) is bounded by

Z'f n’ an (Ui:n’%>

L{x;1>6an)

__Uzn

) Z 1{|X |>6an}>

where wy, 5 is the modulus of continuity of the function f ‘ 0.1]xE;’ ie.

\ wfg(sup
<n
wys(p) =sup{|f(x) — f(y) : x,¥ € [0,1] x Es, d[O,l]xE<Xa y) < p}.?

Define now the function h: M,(E) — R by

h(n) =n(Es),  n€ My(E).

2Recall the definition of the metric djo,1]xE in Section 1.5.
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Then h is continuous on the set
A" = {n € My(E) : ({5, £00}) = 0},

Indeed, take an arbitrary n € A* and assume 7,, — 7 in M,(E) as n — oo. Since the set
Es is relatively compact and n(0Es) = 0, from Theorem 1.4 we obtain that, as n — oo,
na(Es) — n(Es), i.e. h(n,) — h(n). Therefore h is continuous at 7, and then, since
n € A* was arbitrary, on the set A*. Since N* is a Poisson random measure, it holds
that P(N*({£0, £o0}) = 0) = 1, and this immediately implies that P(N* € A*) = 1.

Thus, if Dj, denotes the set of discontinuity points of h, we have
P(N* € D,) < P(N* ¢ A*)=0.

The continuous mapping theorem (see Theorem 3.1 in Resnick [60]) applied to (3.2)

then yields that, as n — oo,
N (Es) = h(N;) = h(N*) = N*(Es).
Therefore the sequence of random variables
Zn: L{1X, 5600} = z”: 0x;/an(Es) = N, (Es)
i=1 i=1

converges in distribution to N*(Es) as n — oo. Hence by Lemma 3.1 it is enough to

prove that, as n — oo,

1
__Uzn
n

) 2.0. (3.6)

wﬁ(;(sup

i<n
Since the function f restricted to the set [0,1] x Es is uniformly continuous (since it

is continuous on a compact set), it follows that wy s(p) — 0 as p — 0. Therefore for

(3.6) to hold it is enough to prove that, as n — oo,

sup - Usn| 0. (3.7)
<n I T

~
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From the Glivenko-Cantelli theorem (see for instance Theorem 7.4 in Durrett [29,
p. 59]) we know that, as n — oo,

1 n
sup |—

n l{Uigx} — X &) 0. (38)
z€[0,1] i—1

Put
1 n
fn(x’ w) = ﬁ Z 1{Ui(w)<x} and fo(a:,w) =7
i=1

for all z € R and w € Q, where (Q, F,P) is the underlying probability space. Then

from (3.8) it follows that, for all x € [0, 1] and almost all w,
En(z,w) = &z, w), as n — oo.

Since the functions x — &,(z,w) are nondecreasing, by Lemma 3.2 we have that, for
almost all w,

& (x,w) = & (r,w) =z, for all z € [0, 1].

This gives monotone functions converging to a continuous limit and hence convergence
is uniform on [0, 1] (see for instance Proposition 2.1 in Resnick [60]), i.e. for almost all
w’

sup £, (z,w) — x| — 0, as n — 00.
z€0,1]

It is not hard to obtain

f,ib_(x,w) :ZUi:nQﬂ)l(i*l,i}(l’), n € N,
i=1
and
sup |Us.n(w) — 1‘ < sup Uin(w)lizr 1y(x) — 2|,
i<n nl ey | = "
which yield that
sup Uzn - 1 gf.—) 0.
i<n

This immediately implies (3.7) and the proof is completed. ]
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For the proof of the functional limit theorem for the i.i.d. case with respect to
Skorohod’s J; topology we need a result on the continuity of the summation functional
)™ defined in Section 2.2. This result will have the same role in the ii.d. case as
Lemma 2.8 had in the proof of Theorem 2.15. Its proof is a slight modification of the
one given in Resnick [60, Section 7.2.3] (one has to replace the state space [0, 00) x E

with [0, 1] x E,, which is straightforward), and is therefore here omitted.

Lemma 3.4. The summation functional ™ : M,([0,1] x E,) — D[0, 1] is continuous

on the set I' =T'y NIy, when D|0, 1] is endowed with Skorohod’s Jy topology, where
[y = {n € My([0,1] xE,) : n({0,1} x E,) = n([0,1] x {&o0, £u}) = 0},
Ty ={ne M,(0,1] xE,) : n({t} xE,) < 1 for all t € [0,1]}.

Observe that the elements of I'y have no two atoms with the same time coordinate.

Equivalently, we can say that for every n € I'; no vertical line contains two points of

n.

Figure 3.1: An example of a point process belonging to the set I'.

Now we come to the final step in proving the functional limit theorem for the i.i.d.
case. The proof of the following theorem follows the arguments presented in Resnick

[60, Theorem 7.1 and Corollary 7.1].
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Theorem 3.5. Let (X,)nen be an i.i.d. sequence of reqularly varying random variables
with index o € (0,2), and let (a,) be a sequence of positive real numbers such that
nP(|X1] > a,) — 1 as n — oco. Then the partial sum stochastic process

[nt]

V(1) :Zﬁ— [ntJE(f—;l{%@}), telo,1], (3.9)

k=1 "
satisfies

d
Vi = W, n — 0o,

in D[0,1] endowed with the Jy topology, where Vo(-) is an a—stable Lévy process with
characteristic triple (0, u,0), where the measure p is the vague limit of nP(X;/a, € -)

as n — o0.

Proof. From Proposition 3.3 we know that, as n — oo,

> Sk /n X an) 4N = > "t 5u) = PRM(LEB x 11) (3.10)
k=1 k

on [0,1] X E. Let w € (0,1) be arbitrary. Since by Theorem 1.6 (iii), u({£u}) = 0, in a
similar way as in the first part of the proof of Proposition 2.13 we obtain P(N € I'}) =1,

where
I ={ne My,(0,1] xE) : n([0,1] x {£u}) = 0}.
Since 9p1yxx[0,1] x E, = [0,1] x {£u}, from Proposition 1.28 we obtain that the

restriction map 7: M,([0,1] x E) — M,([0,1] x E,) defined by

Tm = m| [0,1]xEu

is continuous on the set I"}. Thus from relation (3.10) and the continuous mapping

theorem we get the restricted convergence

a d
> X suan O/ Xean — > Ltz Ot o) (3.11)
k=1 k
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on [0, 1] xE,. In a similar way as in the proof of Proposition 2.13 we obtain P(N| 0.1]xE, €
I') = 1. From this, relation (3.11) and the continuous mapping theorem we obtain that,

as n — 00,
[n]

Xy d .
Za_l{lxk|>uan} - Z]k]‘{‘]k‘>u} (312)
k=1 " <

in D[0, 1] under the J; metric.

Define the function f,: E — [0, c0) with

fu<l’) =T 1{m:u<\x|<1}($), z € L.

Then form the fact that ju,(-) := nP(X1/a, € -) = u(-) as n — oo, using Proposition
1.2 (note that u(Dy,) = p({£u, £1}) = 0 by Theorem 1.6 (iii)) we get [; fu(z) fin(dz) —

i fu(@) p(dz), ie.

X4 ) /
nkEl —1 — x p(dr), as n — 00.
(an {u<‘f—i|§1} {z1u<]z|<1} Iu( )

Therefore, for any t € [0, 1], as n — oo,

X1 LntJ X1

— t/ x p(de).
{z:u<|z|<1}

This convergence is uniform in ¢ and hence

Ln-JE(f—:l{K%gl}) - (-)/{x:K'mgl}xu(dx) (3.13)

in the J; metric on DI0, 1].

Put

ay, = / x p(de),
{z 1 u<|z|<1}

and define the function z,,: [0,1] — R by 2 (¢) = ta,. The function z* is continuous,

and hence it belongs to D[0,1]. Define now h: D[0,1] — D[0,1] by h(z) = z — 2.
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Let show that h is continuous (with respect to the J; topology on D[0,1]). Take an
arbitrary x € DI0,1] and assume dj,(z,,2) — 0 as n — oo. Then from the first
statement in Proposition 2.2 it follows that there exists a sequence of functions (\,)

in A such that, as n — oo,
[An —elloy — 0 and |z, 0 Ay — {0 — 0.
Then it holds that
1h(2n) © An = h(@)[j0,1) < [z 0 A — zlj0,1) + |au| - [[A = €l[jo,1y — 0.

Another application of Proposition 2.2 now gives that dj, (h(x,),h(x)) — 0 as n — oo,
showing the function h is continuous at z. Since x was chosen arbitrary, h is continuous
on the whole D[0, 1]. Hence by the continuous mapping theorem from (3.12) we obtain,

as n — 0o,

Vo)=Y ?1{fk|>u} —(aw S V) =D Gkl gegs — (Daw (3.14)
n ths
in D[0,1] under the J; metric. Define
V(LY X X
)= 2 ) 185 s )
Then in a similar way as relation (2.10) in the proof of Theorem 2.15 we obtain, for

any 0 > 0,
lim Pld,, (V™ V®) > 6 =0.

n—oo

From this, relation (3.14) and Slutsky’s theorem (see Theorem 3.4 in Resnick [60]), we
get

VO SV, asn— oo, (3.15)
in D[0, 1] under the J; metric. From the Lévy-Ito6 representation of a Lévy process (see

Section 5.5.3 in Resnick [60], Section 2.5 in Kyprianou [44] or Theorem 19.2 in Sato
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[63]), there exists a Lévy process Vy( ) with characteristic triple (0, i, 0) such that, as
u | 0,

sup [V () — V(t)] £ 0,
te(0,1]

Since uniform convergence implies Skorohod’s J; convergence, we get
A (Vo™ (+),Vo(+)) — 0

almost surely as « | 0, and hence since almost sure convergence implies convergence
in distribution,

V() S Va(s),  asu—0, (3.16)

in D[0, 1] with the J; metric.
If we show that

lim lim sup P[d, (V("),V},) > §] =0

ul0  n—ooo

for any 0 > 0, then from (3.15), (3.16) and Theorem 3.5 in Resnick [60] we will have,
as n — oo,

Va(+) = Vo(+)
in DJ0, 1] with the J; metric. Since the J; metric on D|0, 1] is bounded above by the

uniform metric on DJ0, 1], it suffices to show that

lim lim supP( sup [V.W(t) — Vi, (t)] > 5) = 0. (3.17)
ul0 n—oco te0,1]
Recalling the definitions, we have

P (( sup 10 = Vifo) > )

t€[0,1]

X; X1
_p PR (EIP Sl LA, s .
_tzl[g;} Z‘Zla/n %l@} [t} (an ﬁgu})‘ }
k
X; Xi
=l |3 {T e P (R )}

=1



3.1 The i.i.d. case 91

By Kolmogorov’s inequality (for example see Theorem 8.2 in Durrett [29, p. 62]) and

the i.i.d. property of the random variables X,,, this has upper bound
_ —~ X; _ X1

X 2
ol

E(X?1{x|<uan))
(ua,)?P(|Xy| > uay,)

N

5 2u? - -nP(|1 X1 > uay).

Now using Theorem 1.12 and the fact that X, is regularly varying with index a € (0, 2),

we obtain

limsupP( sup [V (t) = Vi, (t)] > 6) <62

n—00 te[0,1]
Letting u | 0, we easily get (3.17).
Finally, from Theorem 1.6 (ii) and Theorem 14.3. in Sato [63] it follows that the

process Vy(-) is a—stable. O

As stated before, we presented here the detailed proof of the functional limit the-
orem for the i.i.d. case, which is well known in the literature, only for the sake of

completeness and for an easier presentation of the results in the next sections.

Remark 3.6. In Theorem 3.5 the converse also holds. Precisely, let (X,,) be an i.i.d.
sequence of random variables and let (a,) be a sequence of positive real numbers such

that a,, — 0o as n — 0o0. Define the measure p for z > 0 and a € (0,2) by

[0}

p((z,00]) = px™,  p((—o0,—x]) = gz,

where p € [0,1] and ¢ = 1 —p. If V, 4, Vo as n — oo, where V,,(-) is the partial

sum stochastic process defined in (3.9) and Vj(-) is an a—stable Lévy process with
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characteristic triple (0, i, 0), then the random variables X, are regularly varying with

index « and, as n — oo,

nP<£ S ) = u(-)

n

(see the necessity in Corollary 7.1 in Resnick [60]).

3.2 Isolated extremes

A regularly varying sequence of i.i.d. random variables has a tail process (Y;,) whose
components, except Yy, are zeros (see Example 1.18). Hence its extremes are isolated.
A natural generalization of the functional limit theorem described in the previous
section is the one that involves dependent random variables with the same tail process
as in the i.i.d. case. One condition that assures this is the dependence condition D’
as given in Davis [22]. Functional limit theorems for processes with isolated extremes
can be found in Leadbetter and Rootzén [45] and Tyran-Kaminiska [67]. We give here
a shortened proof of the functional limit theorem for such processes for the sake of
completeness and to make an illustration how the techniques used in the previous
section can be applied to one class of dependent random variables. The emphasis will
be on the convergence of point processes N to a Poisson random measure, as described
in Balan and Louhichi [5].

Suppose (X,,) is a strictly stationary and strongly mixing sequence of regularly

varying random variables with index a € (0, 2) that satisfies condition D’ i.e

lim limsupn Z

k—oco nooo

X, X;
(‘ 0‘ "_’>{L'>_O, for all z > 0,

Qn
where (a,) is a sequence of positive real numbers such that nP(|Xy| > a,) — 1 as

n — oo. It is straightforward to see that condition D’ implies the following condition

Xo| X;
hngP(' o | 3N ):0, for all z > 0, (3.18)

Qn
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where (r,) is any sequence of positive integers such that r, — oo and r,/n — 0 as
n — oQ.
The functional limit theorem in this case is given in the following result. As in

Theorem 2.15, here we will need to assume Condition 2.14 if a € [1,2).

Theorem 3.7. Let (X,,) be a strictly stationary and strongly mizing sequence of reg-
ularly varying random variables with index o € (0,2), that satisfies condition (3.18).
If a € [1,2), also suppose that Condition 2.14 holds. Then the partial sum stochastic

process

1)
Va(t) =) f—: — LntJE(a—nl{lxlgl}) teo,1],

k=1

satisfies

d
Vo = Vo, n — 0o,

in D[0,1] endowed with the Jy topology, where Vo(-) is an a—stable Lévy process with
characteristic triple (0, u,0), where the measure p is the vague limit of nP(X;/a, € -)

as n — Q.

Proof. Recall N =>"" | 0x,/q,. Put k, = |n/r,] and define

kn
Nn = Z Nrn, iy
i=1
where ]\Nfrm, it =1,...,k,, are i.i.d. point processes distributed as N; . The strong

mixing condition implies condition A(a,) from Davis and Hsing [24]: for every f €

CE(E), as n — oo,
pon S5 o { S5 o

This condition implies that N converges in distribution if and only if N,, does, and in

that case they have the same limit. Let show that NV} 4 N* = PRM(p). It suffices to
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show, by Theorem 1.23, that for every f € C(E), as n — oo,

‘I’N;(f) — W= (f).

For m < n put

Wpnn(f) = Bexp { Zf<a>}

=1

Then Uy« (f) = U, »(f). Since Nrn,i, t=1,...,k,, are i.i.d. we have

Uy (F) = (T, n(f))" (3.19)

In a similar way as in the proof of Theorem 2.6 in Balan and Louhichi [5], using
condition (3.18), stationarity and the regular variation property, we obtain that for

every f € CL(E), as n — oo,

k(1 =Wy, n(f) = (1 = Wy n(f)) = 0. (3.20)

For f € C}-(E) the function h: E — [0, 00) defined by h(x) = 1—e~7®) is also in O (E).
Therefore the vague convergence nP(X;/a, € ) — u(-) implies [nh(X;/a,)dP —

[ h(z) p(dx) as n — oo, ie.

n(1 =Wy a(f) =n(1- Ee—f(ffi)> . /E@ — e 1@ u(da). (3.21)

From relations (3.20) and (3.21) we immediately get

n—oo

lim k(1= U, () = /Ea _ 1@ p(da).

From this using Lemma 1.3 in Durrett [29, p. 80], since k,, — 0o as n — o0, it follows

that, as n — oo,
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Hence, by (3.19), as n — oo,

Vs, () = exp (= (1= ) plan)).

Since N and ]T/'n converge in distribution to the same limit, we have that, as n — oo,

U (f) —>eXp<—/

(1= et) plde)).

Since the limit is the Laplace functional of N* = PRM(u) (see Example 1.24 (3)), we
conclude that

N* L N* = PRM(p).
Now repeating the proof of Proposition 3.3 from relation (3.2) we obtain that, as

n — o0,

No =3 8(/nx,/an) = N = PRM(LEB x p).
i=1
This is in fact relation (3.10) in the proof of Theorem 3.5. We can repeat that proof

here almost till the end. The only difference is that in proving (3.17) we can not
use Kolmogorov’s inequality (since our random variables X, are not independent), but
instead we proceed as at the end of the proof of Theorem 2.15 (so we use the arguments
that were used in the proof of relation (2.14)). Therefore we conclude that V;, LV, as

n — oo, in D[0, 1] endowed with the J; topology. [

Remark 3.8. Since the J; convergence implies the M; convergence, it holds that the
process V,,, under the same conditions as in Theorem 3.7, converges in distribution to

Vo as n — oo, in D|0, 1] endowed with the M; topology.

3.3 Functional limit theorem with different partial
sum process

As stated in Remark 2.20, we can not replace the M; topology in Theorem 2.15 by the

J1 topology. But if we alter the definition of the partial sum process in an appropriate
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way, we shall be able to recover the J; convergence for certain mixing sequences.
Let (X,,) be a strictly stationary sequence of regularly varying random variables
with index a € (0,2), and let (a,) be a sequence of positive real numbers such that

nP(|X:| > a,) — 1 as n — oco. Define

«

v(r,00) = cpax” and v(—oo,—x) =c_x” %, x>0,

for some c,,c_ > 0. These relations determine a Lévy measure v which can then be

written as
v(dz) = (crox™* g0 (2) + cea(—2) " (Lo () dz. (3.22)

Let

Sm == Z Xk}; m e N.
k=1
In the sequel we will need that for every x > 0 the following large deviation relations

k.P(S,, > za,) — v(x,00),
(3.23)
k. P(S,, < —za,) — v(—oo,—x),

as n — oo, hold. Here (r,) is a sequence of positive integers such that r, — oo and

rn/n — 0asn — oo, and k, = [n/r,].

Remark 3.9. Some sufficient conditions for relations in (3.23) to hold are given in

Bartkiewicz et al. [6] and Davis and Hsing [24]. We list here the conditions from [6].
1. The process (X,,) is regularly varying with index « € (0, 2).
2. For every x € R, as n — o0,
|0n(@) = (@nr, ()] — 0,
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3. For every = € R,

Tn

dli_)rgoliinﬂs;}p% Z E’:L‘CL (S; — Sq) - za,; X1’ =0,

j=d+1

where for an arbitrary random variable Z we put Z = (Z A2) V (—2).

4. Assume the limits

lim nP(Sqy > a,) =by(d) and lim nP(Sy < —a,) = b_(d), deN,

n—~oo n—oo

lim (b (d) —by(d—1))=cy and lim(b_(d)—b_(d—1))=c_

d—oo d—oo

exists.

5. For a > 1 assume EX; = 0 and for a =1,

lim limsupn ‘E sin(a ,led))} =

d—0oo0 poo

If these conditions hold then the relations in (3.23) hold (see relation (3.6) in [6]).

By Lemma 6.1 in Resnick [60], (3.23) is equivalent to

S”" v
k. P( B ) — (), as n — 00. (3.24)
an
In the sequel we assume relation (3.24) holds. Define
Sf;n = Xt—1)rnt1 + -+ Xery, k,neN

(note Sh™ = 5,.).

Lemma 3.10. Let a € (0,1) and assume relation (3.24) holds. Then for any u > 0,

JlrgoknE( Sral 4 Y <u}) _/|< 2| v(da). (3.25)
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Proof. Fix u > 0. Define
Vn(-) = k.P(a;'S,, €-), n €N,

and
fs(z) = |z|lpeu(z), €K, € (0u),
where B(6, u) = {r € E: § < |z| < u} . By relation (3.24), v, — v as n — oo, and

this with v(0B(6,u)) = 0 yield

/E F5(2) v (dz) — /E F5(@) v(da), (3.26)

as n — oo (see Proposition 1.2). Define

fx) = [zllpa(z), =€k,
where B(r) ={z € E: |z| < r}. It follows

x) vp(dx) — /Ef(x) v(dx x) vp(dx) — /B(J) flx)v(de

e| [ s = [ svia

‘ /B , Fmas) +‘ /B , fovi

‘ / (6,u) Vn dx) /B((S, u) f(x) V(dx) 7

for any d € (0, u). For the first term on the right hand side of (3.27) we have

/\w[lB ) Up(dx) = ki, / S

o |Hisri<sany dP
S, S,
— k‘nE|:| |1{Srn<5an}:| =k E|:|

(3.27)

f(z) v, (dx)

‘ B()

| 1
1 Srn <§an X <dan
{l <|l } {ﬂ {| I< 1

TL

S|
+knE[ a vl <an}y LU {1X;]>6a,)) |

<6
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which implies it is bounded above by

< p[ERl
an

1 > b))

j=1

1{0;21{|Xj|§5an}}‘| + kn(5P<

<k2[

]+k 5213 | X;| > day,)
7=1

X
ke E[|X;[1 .

da,P(|X1| > da,)
From the definition of sequences (r,) and (k,) it follows

kyr, 1

, as n — 00.
n
Since X; is a regularly varying random variable with index «, it follows immediately

nP(|X1| > da,) — 67, as n — 00.

By Theorem 1.12 it holds that

li [’lel{\xl\géan}] o
11m — .
n—oo 50’71 (|X1| > 5an) ]__a

<51a< - +1),
l—«

Now from (3.28) we get

n—oo

lim sup ‘ /B((S) f(z) v, (dx)

and therefore, since « € (0, 1),

hm lim sup ‘ / f(z) v, (dx)

n—oo

(3.29)

By the representation of the measure v in (3.22) we get

/x|@_|x|u(d) e
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Hence for the second term on the right hand side of (3.27) we have

\ /  Tvias)

From (3.26) we get for the third term on the right hand side of (3.27)

\ / RCEE / K \ [ ssywtao) - [ s

— 0, as n — o0.

= / |z| v(dx) — 0, as 6 — 0.
|z|<6

Now from (3.27) using (3.29), (3.30) and (3.31) we obtain

hmhmsup’/f ) vy (dx) /f

From this immediately follows

/E [ (&) va(dar) — / f(@)v(dz),  asn— o,

S,
kE(| Sraly o )H/ o v(dz),  asn— oo
an A} ol <

i.e.

(3.30)

(3.31)

O

The mixing condition appropriate for the main result in this section is given in the

following definition.

Definition 3.11. We say a strictly stationary sequence of random wvariables (X,,)

satisfies the mizing condition A”(a,) if there exists a sequence of positive integers

(1) such that r, — oo and ,/n — 0 as n — oo, and such that for every f € Ci-(E),

denoting k, = |n/r,], as n — oo,

kn kn,
Bep (= fla's5") ) - (Bewn(-1(75.0))  —o
k=1

(3.32)



3.3 Functional limit theorem with different partial sum process 101

The mixing condition A”(a,) holds if the process (X,,) is strongly mixing with
geometric rate (see Proposition 3.14 and Remark 3.15 below). In case o € [1,2), we

will need to assume a condition similar to Condition 2.14.

Condition 3.12. There exists a sequence of positive integers (r,) with r, — oo and

k, = |n/r,] — 0o as n — oo, such that for all § > 0,

J Skn Skn
o, —E( 5’y ))‘Nﬂ:o
Z1< an ‘gu} {lsm <u}

Theorem 3.13. Let (X,,) be a strictly stationary sequence of reqularly varying random

limlimsup P| max
ul0 pooco 1<i<kn

variables with index o € (0,2), and let (a,,) be a sequence of positive real numbers such
that nP(|X1| > a,) — 1 asn — oo. Suppose there exists a sequence of positive integers

(rn) such that, as n — oo, 1, — 00, k, = |n/r,| — oo and

kP(in c > (). (3.33)

Suppose that the mizing condition A”(a,) holds. If o € [1,2), also suppose that Con-

dition 3.12 holds. Then for a stochastic process defined by

[Ent] ok, n s,
W, (t) = ; - LkntJE(Z1{%@}), teo,1],
it holds that
W, LN W, n — oo,

in D[0,1] endowed with the Jy topology, where Wy(-) is an a—stable Lévy process with

characteristic triple (0,v,0).

Proof. Let, for any n € N, (Z,,x)r be a sequence of i.i.d. random variables such that

Zna 4 Sy, . By relation (3.33) we have

Z, v
knP< nl e ) — v(), as n — 00. (3.34)

n
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Proposition 1.27 then implies, as n — oo,

kn

=Y 6,1, 5 PRM(v) (3.35)

k=1

on E. For any n € N define a point process

kn
k=1

For any f € C};(E) we have

- Eexp( Zf -1s'f")—(Eexp<—f<aglsrn>>)kn.

Hence, the mixing condition A" (a,) implies V¢, (f) — ¥,

gn(f) — 0 as n — oo. Relation

(3.35) and Theorem 1.23 then imply, as n — oo,

kn
> 6,10 5 PRM(v).

This corresponds to relation (3.2) in the proof of Proposition 3.3. Now using the same

technique as in that proof we obtain that, as n — oo,

kTL

Z b/ 0z 5527 <, PRM(LEB x v) (3.36)
on [0, 1] x E. This relation corresponds to relation (3.10) in the proof of Theorem 3.5.
We can repeat that proof in our case (we only need to put k, instead of n in some

places) until relation (3.16). It remains to prove

h%lhmsupP< sup [WW(t) = W, (t)| > (5) =

n—00 te[0,1]

for every 6 > 0, where

Lkn-] Sk n S
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We have

P sup [W0(0) ~ Wi (0)] > )

te(0,1]
(Skz n <Sk; n ))
I'n 1 - E In 1 k, n
. il cul {E<u}

For a € [1,2) this relation is simply Condition 3.12. Therefore it remains to show

Mb

> 5} : (3.37)

= P| max
1<j<kn

B
Il

(3.37) for the case when « € (0,1). Hence assume « € (0, 1). For arbitrary (and fixed)

é(sf”nl{fn" }‘E(Sf”nl{'sfn" }))M'

Using stationarity and Chebyshev’s inequality we get the bound

6 > 0 define

Hum) =P |

Skn

—m 1 E Sﬁ”nl )
W N T (a 1 a:;@}) - }

Sk gk
I }_E(a )|
Skn

Skn
()]

< 260 ZE( W<u})

anp Y

Sr

Using Lemma 3.10 we obtain that

|Sr | /
lim k,E 1 =
nLoo k ( ap ‘i’:‘gu} |z|<u |x’ V(dx)

o « 11—«
= (c- +C+)1 —u

I(u,n) < P| max
1<J<knk !

'kn
=P

- k=1

kn
< 61E[
k=1

— 0, as u — 0.
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Hence

lim lim sup 7 (u,n) = 0,

ul0  pooco

which completes the proof, with the note that the a-—stability of the process Wy(-)
follows from Theorem 14.3 in Sato [63] and the representation of the measure v in

(3.22). 0

At the end of this section we give some sufficient conditions for the mixing condition

A"(a,) and Condition 3.12 to hold.

Proposition 3.14. Suppose (X,,) is a strictly stationary sequence of reqularly varying
random variables with index o € (0,2), and (a,) a sequence of positive real numbers
such that nP(|Xy| > a,) — 1 as n — oo. Assume relation (3.33) holds for some
sequence of positive integers (r,) such that r, — oo and k, = [n/r,| — oo asn — oo,

and k, = o(n') for some 0 <t < 1. If the sequence (X,,) is strongly mizing with
knoy, 41 — 0, as n — oo, (3.38)

where (ay,) is the sequence of a—mizing coefficients of (X,) and (1,,) is a sequence of
positive integers such that l,, — oo as n — oo and l, = o(n?) for some 0 < ¢ <

min{l/a, (1 —t)/(1 + «)}, then the mizing condition A" (ay) holds.

Proof. Let n be large enough such that [,, < r, (note that for large n it holds that
l, <n'™t <r,). We break X;, X, ... into blocks of r,, consecutive random variables.
The last [,, variables in each block will be dropped. Then we shall show that doing so,
the new blocks will be almost independent (as n — oo0) and this will imply relation
(3.32) for the new blocks. The error which occurs by cutting of the ends of the original
blocks will be small, and this will imply condition (3.32) for the original blocks also.
Take an arbitrary f € C}(E). Since its support is bounded away from 0, there

exists some r > 0 such that f(x) =0 for |x| < r, and since f is bounded, there exists
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some M > 0 such that |f(z)| < M for all x € E. For all k,n € N define

Sk’n = Xan—ln-i-l + ...+ Xkrn‘

Tn,ln

Son K, > 1, is the sum of the last [, random variables in the k-th block. By stationarity we

have

k,n k,n i 1,n 1I,n __
Srn - S”'nyln o Srn - Srruln - ST"

-

This and the following inequality
‘Egh EgEh| 401020[7”,

for a F7 , measurable function g and a F35 m measurable function h such that [g| < C

and |h| < Cy (see Lemma 1.2.1 in Lin and Lu [47]), applied k,, times, give

kn kn
‘Eexp ( = flatsp - anlSii;Zn)) - (E exp(—f(anlsrnzn)))

k=1

< dkpay 4. (3.39)

Then
kn kn
}Eexp (- slatstn) - (Bew(-rar's.))
k=1
kn
< ’Eexp ( Zf (a,'SE™) ) — Eexp <— Zf(a;ISfT’L" - a;leT’:Lln)> ‘
k=1

kn
‘Eexp< Zf —lsk”—a;IS,’f;m) - (Eexp(—f(a;lsm_lm)

kn

| (et f@,;lsrn_ln)))k” - (Een-r"s.))

=: [1(n) + Iz(n) + I3(n). (3.40)
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By Lemma 4.3 in Durrett [29] and stationarity we have
kn
L(n) < E(Z |€—f(a;15f;1n) B e—f(aEISf;L”—aﬁlsfﬁzn)y)
k=1
_ knE‘e—f(azlsm) _ e flant Sy
— knE‘e_f(a’;«lsrn)(l — ef(a’EIS”'n)_f(aglsrn—ln))|
< kBl - ef(aglsrn)—fm;lsm_ln)"
It can be shown that for any ¢ > 0 there exists a constant C' = C'(¢) > 0 such that
1 —e | < Clx|, for all |z| < t.
Since for all z,y € E, |f(x) — f(y)| < 2M, there exists a positive constant C' such that
Ii(n) < CkaElf(a,"Sy,) — flag ' Sr,-1,)l- (3.41)
Further, since f(z) = 0 for |z| < r, we have
= E[lf(a,'S,,) - f(a’r_LlS"‘n—ln)|1{a;1|5rn_ln|>T/2}]‘{a;1|5}n|>’r‘/4}]
+ E[f(aﬁlswfln)1{a;1|smfzn\>r/2}1{a;1\5m\<r/4}]
-1
+ B Sn) Lz is,, </ s 15, 5]

< E[‘f(a/T_LISTn) - f(aT_LlSTn_ln)|1{@;1|Srn_ln|>7‘/2}1{a;1|s7»n|>7”/4}1|

+ MP (@ > g) + MP (M > g) (3.42)

Qn, Qn
Since the set S = {x € E : |z| > r/4} is relatively compact and any continuous
function on a compact set is uniformly continuous, it follows that for any € > 0 there

exists d > 0 such that |f(x) — f(y)| < € for all z,y € S such that p(x,y) <, where p
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is the metric on E defined in (1.1). If |z| > /2, |y| > /4 and sign(x) = sign(y), then
z,y € S and

|zl —Jyll _ 8
p(z,y) = ey < T—2|$ —yl. (3.43)

Define g,(z,y) = | f(a;'z) — f(a;'y)| and let € > 0 be arbitrary. Then

E[‘f(aglsrn) - f(a”r;lsrn*ln>’1{0,;1‘57‘”_1”‘|>T/2}1{(l771|5rn|>7‘/4}1|

= E[9n(Srns Sramtu) Lazlis, o (517245180, [5r/4} Hsign(Sr, 1) £5ign(Sr)}]

+E [gn(Srna S’I‘n—ln) 1{a;15

o —

1n>7/2, a5 ' Sry >1/4} l{aﬁl 1Sry = Srp—tn \<5T2/8}}

+E [gn(S'rna S’r‘n—ln)]‘{a;ls

m—ln

<_T/27 avjlsrn <—’I”/4} 1{‘1;1 ‘Srn _Srn—ln ‘<5r2/8}:|

+ E [gn(snn S’f‘n*ln) 1{(1,715

rn—ln

>T/2,a;15Tn>T/4}1{0,;1\5%”—5)”_1"\>(5r2/8}:|
+ E [gn(STn7 ST‘n*ln)1{aﬁlsrn,ln<fr/2,a;lsrn<fr/4}1{a;1\SrnfSTn,ln\>6r2/8}] :

By stationarity and relation (3.43) this is bounded above by

< QMP(M > 3_r)
a, 4

+ E [Qn(srn s Sr—tn) 1{a;15m_ln >r/2} 1{a;15m >r/4} 1{p(a;15m , a;lSrn_ln)gé}]

+ E [gn(STm STn*ln) 1{a;15m,ln<—r/2}1{a;15m<—r/4}1{p(a;15rn,aT_LlSTn,ln)gé}]

. 2
+4MP(—’S’”" Sl >5i)
an 8
2
< onp( 1%l 3 L p (1l ST | agp (1] S 7Y
an 4 an, 4 an 8

Therefore, from (3.41) and (3.42) we obtain

151, |

n

Li(n) < SMCknP< > 7) + eCknP(|S’"”| > f), (3.44)

an 4

where v = min{r/4, 6r*/8} > 0.
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Since X is regularly varying with index « € (0, 2), for any = > 0
P(X1| > 2) = 27" L(x),
where L is a slowly varying function (see Proposition 1.8). It also holds
an = n*L'(n),

where L’ is a slowly varying function (see Remark 1.9). Therefore, taking an arbitrary

0<s<min{a, ao(l —t—q—aq)/(1 —aq)}, we have

kﬁ(M > ’y) < ko P(X0| > van/ly) = knly, (%) L(%)

= knln <’yl_(jln) * Cp,

_ (e (2
%‘(@)L(m)

Since a, /l,, — 0o as n — oo, by Proposition 1.3.6 in Bingham et al. [13] we have that

where

¢, — 0 as n — oo. Further

ln Va—sa%—s nd E ,ya—sn(oz—s)/a(L/(n))a—s

l_n 14+a—s ﬁ 1
nd nt fYa—snp(L/(n))a—s

where p = (o — s)/a—t — (1 + « — s)q. It can easily be checked that p > 0. This and

the fact that I, = o(n?) and k, = o(n'), by Proposition 1.3.6 in Bingham et al. [13],

imply that k,l,(ya,/l,)*~* — 0 as n — oo. Hence

knP(|Sl"| > 7) — 0, asn— oo. (3.45)

n

From relation (3.33) we obtain that, as n — oo,

k. P (‘ii‘ > %) —v({z ek |z| >r/4}) =1 A < 0. (3.46)

n
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Thus from relations (3.44), (3.45) and (3.46) we obtain

limsup I;(n) < ACkE,

n—oo

and since € > 0 is arbitrary, we have

lim I;(n) = 0. (3.47)

n—oo

From (3.39) and the assumption that k,a;,+1 — 0 as n — oo, it follows immediately

lim Ir(n) = 0. (3.48)

n—oo

Using again Lemma 4.3 in Durrett [29] it follows
I5(n) < ko E|ef @ Sm) — g=f@nSrna)|,
Repeating the same procedure as for I;(n) we get

lim I3(n) = 0. (3.49)

n—oo

Taking into account relations (3.47), (3.48) and (3.49), from (3.40) we obtain that, as

n — oo,
k‘n kn
Be (= Y- a5 - (Besl-sla'5,))  — 0.
k=1
and this concludes the proof. Il

Remark 3.15. Relation (3.38) holds if (X,,) is strongly mixing with geometric rate,
i.e. o, < Cp" for some p € (0,1) and C' > 0, and [,, ~ n” for some r > 0, i.e. [,,/n" — 1
as n — o00. Therefore if the sequence (X,,) is strongly mixing with geometric rate,

then the mixing condition A”(a,) holds.
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Proposition 3.16. Suppose (X,,) is a strictly stationary sequence of symmetric and
reqularly varying random variables with index of reqular variation o € [1,2), and (a,)
a sequence of positive real numbers such that nP(|Xy| > a,) — 1 as n — oco. If the

sequence (py) of p—mizing coefficients of (X,,) decreases to zero as n — oo and

> Py < o, (3.50)

320

then Condition 5.12 holds.

Proof. Let n € N and u > 0 be arbitrary. Define

Sf,n Sﬁ,n
Zk:Zk(u’n):a_nl{S’fg”<u}_E<a_n1{lsfﬁ<u}>’ k € N.

an

Take an arbitrary ¢ > 0 and as in the proof of Theorem 3.13 define

S - ]
k=1

I(u,n) = P{ max

1< <kn

Corollary 2.1 in Peligrad [54] then implies
[logy kn |
I(u,n) < 6§ 2Cexp (8 Z ,512]'/30 k,E(Z?),
=0
where (py) is the p-mixing sequence of (Z) and C' is some positive constant (here we

put log, 0 := 0). Now a little calculations show that for any k& € N,

Pk < Pk—1)rn+1s

and since the sequence (py) is non-increasing, we have py < pg. From this and assump-

tion (3.50) we obtain that

I(u,n) < CLO ? k,E(Z}), (3.51)
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for some positive constant L. Further we have

‘ 2

E(Z}) < E ‘S’"”|21 _p(2 1
(Z1) < 2 smig)) = Bl s Mo e

n an

|‘S'7'n|2
* E< a? 1{‘3;—"‘<u}1{ufi1 |Xi|>uan}}>

anp

< E(’Zf—l XH@}F) —|—u2P<O{|XZ-] >uan}>. (3.52)
i=1 " i=1

Since the random variables X; are symmetric, by Theorem 2.1 in Peligrad [54] we have

E(\igl
=1

|logy

] 2
2 X
Xi|<u}‘ ) < CeXp (8 E pl_2j/3J (n,u)) TnE<a_21]_{Xl<u}), (353)
o =0 no Lon =

X
for all n € N, where (p;(n,u)), is the sequence of p-mixing coefficients of (—]1 L }> .
J

n an 3

Since the function f = f,,,: R — R defined by

T

H@) =l

an an

is measurable, it follows that

0(2(—51 x].|<u}> C o(Xj)

an

(see Theorem 4 in Chow and Teicher [20]). From this we immediately obtain p;(n,u) <
pj, for all j,n € N and v > 0. Thus from (3.53), by a new application of assumption

(3.50), we get

X 2 X2
E(‘Zal{f”gu}‘ ) <OLT”E<G_211{'§1<U}> (354)
i=1 " n "

Now relations (3.52) and (3.54) imply

X2
kE(Z2) < CLk;nrnE(a—211 X1<u}> + Pk P(IX0] > uay)
knrn E[X?1 v

u?a? P(| X1| > uay,)
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From this, using the fact that k,r,/n — 1 as n — oo, regular variation property of X;

and Theorem 1.12, we obtain

L
limsup k,E(Z7) < u*™® (g + l).

n—o00 2 —«

Letting u | 0, it follows that lim, o limsup,,_ ., k,E(Z?) = 0. Therefore, from (3.51),
we get

11{101 limsup I(u,n) =0,

and Condition 3.12 holds. O



Chapter 4

Applications to different time series
models

In this chapter we analyze some time series models that are often used in applications.
These models include MA, GARCH, ARMA and stochastic volatility models. For the
first three of them, we will give sufficient conditions for Theorem 2.15 to hold. There-
fore for these models we obtain functional limit theorems with the M; convergence.
For the stochastic volatility model we are able to obtain a stronger result, since under
suitable assumptions, the dependence condition D’ will hold. Thus by an applica-
tion of Theorem 3.7, we will get the J; convergence in the corresponding functional
limit theorem. At the end of each section we give a proposition which contains the

corresponding functional limit theorem for the model in consideration.

4.1 MA models

Consider the finite order MA (moving average) process defined by
Xn = Zciznfiy ne Z7 (41)
=0

where (Z;);ez is an i.i.d. sequence of regularly varying random variables with index

a € (0,2), meN,c,...,c, are nonnegative constants and at least ¢g and ¢, are not

113
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equal to 0. Take a sequence of positive real numbers (a,,) such that

nP(|Z| > an) — 1 as n — 00. (4.2)

Clearly the sequence (X,,) is strictly stationary and m-dependent, therefore also strongly
mixing, so the mixing condition A’(a,) holds by Proposition 1.34.
Let k € N be arbitrary. For every ¢ = 0,1,...,m define matrices Ay ; of dimension

k x k and k-dimensional random vectors Z;; by

¢ 0 0 0
0 ¢ 0 0
A —| 00 @ 0
0 0 0 ¢

X = Z Ay,
=0

Since the components of the random vector Z;; are i.i.d. and regularly varying with
index o, a multidimensional version of Proposition 1.11 implies that the vector Zy ; is
regularly varying with index «. Therefore, by Definition 1.5, there exists a nonzero
Radon measure i ; on (EF, B(E¥)) with ,ukﬁi(ﬁk \ R¥) = 0 such that, as n — oo,

np (@ = ) = i (°)-

Qn

Let ||x|| denote the Euclidian norm of a vector x € R¥, and |A|| the operator norm of

a k x k—matrix A, i.e. |All = sup, - [|Ax]|. Since

m m
D AR =D el < o0,
=0 1=0
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for every 6 > 0, by Theorem 3.1 and Remark 3.2 in Hult and Samorodnitsky [38] we

have that, as n — oo,

P(a*lx(k) c ) o m 1

n — ) o= i O A_i ). 4.3

P(|Zyoll > ax) i () ;“’f’ ki () (4.3)

Since the random variables Z7, ..., ZZ are i.i.d. and regularly varying (with index a/2),

we have
P(||Zioll > an) = P(Z} + ...+ Z7 > a2) ~ kP(Z} > a2) = kP(|Z,] > a,)

(see Feller [32, p. 271] or Lemma 1.3.1 in Embrechts et al. [30]). Hence from relation

(4.2) we obtain that, as n — oo,
nP(||Zxol| > an) — k.
Therefore from (4.3) we obtain that, as n — oo,

nP(a,

n

Ky € ) L k(). (4.4)

If we show the measure py, is nonzero, then the random vector X will be regularly
varying with index «. Since the measure iy, is nonzero, there exists a set B € B(EEF)
such that gy, (B) > 0. But then, by Theorem 1.6 (ii) and the fact that ¢,, > 0, we

have

Hk,m © Al;,in(B) = km({X 1 AgmXx € B}) = /Lk,m(c;le) = Cp ftem(B) > 0.

Therefore ju;,(B) > 0, and hence for any k£ € N the random vector Xy = (Xq,..., Xj)
is regularly varying with index « (note that this trivially implies that X7 is regularly
varying with the same index). From this we conclude that the process (X,,) is regularly
varying with index « (see Remark 1.14). A different proof of the regular variation
property for the process (X,,) appeared earlier in an unpublished work of Basrak and

Segers.
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In the sequel we assume (without loss of generality) that " ¢ = 1. Then from

(4.2) and Lemma 1.2 in Cline [21], we have that
nP(|X:| > a,) — 1, as n — oo.

Let (r,) be an arbitrary sequence of positive integers such that r, — oo and
rn/n — 0 as n — oo. Choose k and n such that r, > k£ > m. Then taking into

account stationarity and m-dependency of (X)) we have, for an arbitrary ¢ > 0,

P< max |X;| > ta,

k<lil<rn

|X0|>tan> - P( max \Xi]>tan>

k<lil<rn

2r,,
< 20 — k+ DP(IX)] > tan) < 22 - nP(|X)| > tay).
n

Since X is regularly varying, nP(|X;| > ta,) — t~® as n — oo. This with the fact

that r,/n — 0 as n — oo yields that

hmsupP( max | X;| > ta,

n—00 ki<

1Xo] > mn> —0,

and therefore the anti-clustering condition AC(a,,) holds.

The tail process (Y;,) of the process (X,,) can be found by direct calculation. First,
recalling the notions and result from Section 1.3, it holds that Yy, = [Y;|©g where
|Yo| and ©¢ = sign(Yp) are independent with P(|Yy| > y) = y= for y > 1 and
P(©y=1)=p, P(©g = —1) =q¢=1—p. Next, let K denote a random variable with
values in the set {0,...,m}, independent of Yy, and such that P(K = j) = ¢f*. To

simplify notation, put ¢; :== 0 for i € {0,...,m}. Then

y,= 2Ky g, =9 Ko ez (4.5)
CkK CK

represents the tail process and spectral process of (X,,), respectively.
For simplicity, we will prove (4.5) only for n € {1,...,m} and in the case when

¢; > 0 for all = 0,1,...,m (the other cases can be treated similarly, and therefore



4.1 MA models 117

are omitted). Let y > 0 be arbitrary. Firstly, we will calculate

P(X, > zy, | X,
lim P(z7'X, > y||Xo| > ) = lim (Xn >y, [Xo| > )

, 46
o A% T P(Xol > o) (46)

and show that this expression equals P((c, 1k /ck) Yo > y). For every [ € {—m, ... n}

define the set A(l) = {—m,...,n} \ {{}. Then we have

P(X, > ay, [Xo| > 2) = P([){X0>ay, [Xo| > 2, |2 < 2%°})

l=—m

P( U (X0 > ay, [Xo| > @, 2] > 0, |2, < 2P for alls € A(l)})

l=—m

+P< U X0 > 2y, [X| > 2, |Zl|>x2/3,|Zs|>:1:2/3}>

—mLI<s<n
Since |Z_;| < 2?/3 for i = 0,...,m implies
| Xo| < Z ¢l Z_i| < 23 Zcz x, for large z,
i=0

it follows that I;(x) = 0 for large x, which obviously implies

lim L)

lim S S = 0. (4.8)

The fact that the random variables Z; are i.i.d. gives

m+n-+1
D M A B G | L CAEE

—m<I<s<n

Therefore, denoting M = ("*7") and using the fact that P(|Xo| > z) = 27°L(z) for

some slowly varying function L (see Proposition 1.8), we have

() (12| > 22)
P(Xo| > a) M{Pu Xo| > 22)
( )
( )

r_ [P(|Xo| > )]
P(|Xo| > )

P(|Zy] > 2?/®
P(| Xo| > 22/3

- } L)

/4 L(x)
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Since by Lemma 1.2 in Cline [21],

P(|Z,| > 2%/3) 1
- m = 17
P(|Xo| > x2/3) el

=0 1

as r — 00,

and by Proposition 1.3.6 in Bingham et al. [13], z~%/?*L(2?/3) — 0 and 2°/*L(z) — oo
as n — 0o, we immediately get

I
lim 3 (x)

L AR 0. (4.9)

The term I5(x) can be written in the following form

0
L(z) = Z P(X, > zy, | Xo| > z,|Z| > 2%/3,|Z,| < 2*for all s € A(l))
l=—m

+ Y P(X, > ay, | Xo| > x,|Z)] > 23| Z,] < 2P for alls € A(l))
=1

In a same way as for I;(x), we obtain that, for every [ = 1,...,n,
P(X, > zy,|Xo| > z,|2)| > 2*3,|Z,| < 2*3for alls € A(l)) =0
for large x. Therefore, for large x,

0
Lz) =Y P(X, > ay,|Xo| > z,|Z] > 2**,|Z,| < 2**for alls € A(1)).  (4.10)

l=—m
Note that for every [ = —m,...,n—m — 1,
P(X, > xy,|Xo| > z,|2)| > %3, Z,| < 2*3for alls € A(l)) =0 (4.11)

for large x, since |Z,| < 2?/3 for all s € A(l) implies

| Xn| < Z Ci| Zpi| < 2?3 Zci < 2, for large .
i=0 i=0

Now take an arbitrary | € {n —m,...,0} and put B(l) = {0...,m} \ {—{} and
Ci =Y ienw € = 2oio € — ¢ Then, since |Z,| < 2*® for s € A(l), [Xo| > = and

X, > xy imply

7 < |Xo| < el Zi] + Z il Zi < e Zi| + 230,
ieB()
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ie. c|Z)| >z —2?3C,

vy < | Xl < enntlZl+ ) @l Zuil < cont Z] + 2*PC1,

i€B(1—n)
i.e. coi|Zi| > 2y — 2*3C)_,, and
zy < X, < o Zy+ 330,
ie. Z; > (xy — 2%3C)_,) /cpn_y > 0 for large x, we have
P(X, > xy, | Xo| > z,|2)| > %3, Z,| < 2% for all s € A(]))
< P(Z, >0, c |2 >z — 223y, Cni|Z1] > xy — x2/3C’l,n) (4.12)

for large x. Therefore, from (4.10), (4.11) and (4.12) we obtain that, for large x,

0
Ly(z) < Z P(Z, >0, cy|Z]| > x — 223y, Cnat|Zy| > xy — x2/3Cl_n).

l=n—m

Now take an arbitrary s € (0,1). Then for large x it holds that

T — x2/3Cl > sx and Ty — 223 Ci_n = sxy.
This implies
0
L(z) < Z P(c_1Z) > sx, cu1Z) > sxy)

= Z (Z) > sby(y)z), for large =z,

where b, ;(y) = max{1/c_;, y/c,—;}. Hence

, L(z) o P(Z, > sba(y)z)
1 — = K E 1 ’
lin_)Solip P(’X[)’ > :13) 1m sup

P(Z P(|Z P(|X,
— Z limsup ( l>5bn,l(y)x) . (l l’ >Sbn,l<y)x) . (‘ 0‘ >Sbn,l(y)x>‘

e—oo P(|Zi| > sbui(y)x) P(|Xo| > sbni(y)x) P(|Xo| > )
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Since the spectral measure of X is equal to the law of ©¢ (recall this fact from Section

1.3), we have
. P(Xo > l') . P(XO < —l')
lim ————~ = and lim ————= =g¢.
e P(IXg| > 7)1 v P(Xo[ > )
Put
P(Z P(Z; < —
p = lim (21 > 7) and ¢ = lim (21 < —)

=00 P(| 21| > )
Then by Lemma A3.26 in Embrechts et al. [30] we have

. P(XQ > I) , . P(XO < —l') ,
lim ———% = and lim ——= =¢.
e P(Zi] > 2) " e P21 > )
Therefore, using Lemma 1.2 in Cline [21], we obtain that
, P(X() > LL') T P(Xo > 1’) P(|X0| > JT)

- lim = lilm .
Pm BRP(Z] > 1) e P(Xo| > ) P(Z1] > 2)

= p)Y ¢ =p
1=0

Similarly ¢’ = ¢. This implies

P(Z;, > sb,,(y)x)

lim = p.
o P2 > shu)a) "
Using again Lemma 1.2 in [21] we get

T—00 P(‘Xo‘ > Sbn,l(y)x)

Further, since X is regularly varying with index «, it follows that

i P(|Xo| > sbp(y)x)

W s ) )
This all leads to
limsupA <ps© 20: (bna(y))
oo P([Xo| > ) w7



4.1 MA models 121

Since s € (0,1) was arbitrary, letting s — 1, we obtain that

. () 0 B
1 — K b, «, 4.1
e R €7 32 () =

On the other hand, for an arbitrary [ € {n —m,...,0}, since ¢_;Z; > x + 223Cy,

CnZy > wy + 2%3C)_, and | Z,| < 2%/ for s € A(l) imply

X, =ch 12+ Z Cilin_i > 1Y + xZ/SC’l_n — x2/3C’l_n = xy,
i€B(l—n)

Z; > (xy + :132/3C'l_n)/cn_l > 2%/3, for large x,

and

x+3:2/3Cl < C_l’Zl’ = ‘XO - Z cid_;| < |X0’ + Z Ci|Z—i’ < |X0| +.’£2/3Cl,
ieB(l) ieB(l)

i.e. | Xo| > x, we obtain that
P(c1Z; >z + 223Cy, a1 2, > zy + 2230, |Zs| < 2?3 for alls € A(l))
< P(X, > oy, | Xo| > x, 12| > 223, |Z,| < 2*Pfor alls € A(l)) (4.14)

for large x. Therefore, from (4.10), (4.11) and (4.14) we obtain that, for large x,

0
L(z)> Y PleaZ > w+2*PClconiZ > ay+a*PCiiy, | Zo] < 2 for all s € A(1)].

l=n—m

Now take an arbitrary s € (1,2). Then for large x it holds that
x+ 2220 < sz and xy + 2?30, < sxy.
This implies

0
L(z) > Z P(c_1Z; > sz, cu1Z) > sxy, |Zs| < 2*3for alls € A(1))
l=n—m

0
= Z P(Z, > sbui(y)x, | Zs| < 2?3 for alls € A(1)), for large .

l=n—m
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Hence, since the random variables Z; are i.i.d., we obtain that

I(z) < 20: lim inf P(Z; > sbui(y)zx, | Zs| < 223 for alls € A(l))
g =00 P(|Xo| > )

hmmf—
z—oo P(|Xo| > )

l=n—m

Zl > sbi(y)z) 2/3\n+m
Z lim inf SR [P(1Z1] < 2¥3))

l=n—m

From the calculations that we have already made, it is clear that

lim P(Z, > sby,(y)x)
z—oo  P(|Xo| > )

=P (sbna(y)) ™"

This and the fact that P(|Z;| < 2?/3) — 1 as # — oo, imply

Iy(x) RS _
liminf —————— > ps™© b, .

Since s € (1,2) was arbitrary, letting s — 1, we obtain that

Lo(x) ° -
hilllolgfm Z P Z (bra(y)) " (4.15)

l=n—m

From relations (4.13) and (4.15) we conclude that

Iy(z) - .
Jggom:p > (bnaly) ™™ (4.16)

l=n—m

Now, relations (4.6), (4.7), (4.8), (4.9) and (4.16) give

0
lim P(a™'X,, >y || Xo| > 2) = p > (bualy) ™™ (4.17)
l=n—m

From the independency of Y and K, as well as |Yy| and Oy, and the fact that ¢; = 0

for i > m, we get

P(Cn—O—KYb>y) ZP(CTH_KYE)>:U,K—]) P<Cn+]Y'0>y>P(K:j)
CK — CK — Cj
j=0 7=0
_ Z P(C"“ 1Yo Qo >y, O = 1) P(C"ﬂ' Y| > y) PO =1)cf
=0 = 9
_ P(]YO]> K ep.

j=0 Cntj
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Since for z > 0, P(|Yo| > 2) = 1j9,1)(2) +27%1}1,00)(2), after some standard calculations,

we obtain that

P(1%0] > 2 ) e = (bn (1)

Cn+j

Therefore

—-n

ﬂijm>@:p;wmm»% (4.18)

Comparing (4.17) and (4.18) we conclude that

lim Pz X, > y| [ Xo| > x) = P(C’”K Yy > y> y > 0. (4.19)
Ck

T—00

In a similar manner we get

lim P(z7'X, < —y||Xo| >2) =P

Tr—00

<C"+K Y, < —y>, y> 0. (4.20)

Recalling the definition of the tail process in Section 1.3, relations (4.19) and (4.20)
yield the first equation in (4.5). The second one then follows immediately. From (4.5)
we conclude that at most m + 1 values Y,, and ©,, are different from 0 and all have the
same sign.

Observe further that, since the sequence (X,,) is m—dependent, it is also p—mixing
(pn = 0 for n > m + 1). Hence by Proposition 2.19, Condition 2.14 holds when
a € [1,2). Therefore, the sequence (X,,) satisfies all the conditions of Theorem 2.15,
and the partial sum process V,(-), defined by (2.4), converges in distribution, as
n — o0, to an a-stable Lévy process V() in D0, 1] under the M; topology. The
characteristic triple of the limiting process can be found from the results in Davis and
Resnick [23] and Davis and Hsing [24]. Suppose that o € (0,1) U (1,2) and EZ; = 0

for @ > 1. Then the characteristic triple is of the form (0, v,b), where

m

v(dz) = a(z ci)amla <p1(0,oo)(x) + 4100 (a:))dx, (4.21)

1=0
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b:(p—q)lf‘a[(f;ci)a—1] (4.22)

1=
The case when a = 1 can be treated similarly, but the corresponding expressions are
much more complicated, due to the specific form of the location parameter 7 of the
characteristic function of V(1) represented in the form given in Theorem 1.45 (see

Remark 3.2 and Theorem 3.2 in Davis and Hsing [24]).

The following proposition concisely gives the functional limit theorem for finite

order MA processes considered in this section.

Proposition 4.1. Let (X,,) be a finite order MA process defined by (4.1), where (Z;)
is an i.1.d. sequence of regularly varying random variables with index o € (0,2), the
coefficients cy, ¢, ..., cp are nonnegative and at least co and c,, are not equal to zero.

Then the following statements hold.

1. The partial sum stochastic process V,,(-), defined by (2.4), converges in distribu-

tion to an a-stable Lévy process V(-) in D0, 1] under the My topology.

2. Assume a € (0,1) U (1,2), > ¢t =1 and EZy = 0 for « > 1. Then the
characteristic triple of the limiting process V() is of the form (0,v,b), where v

and b are given in (4.21) and (4.22).

Infinite order MA processes with nonnegative coefficients are considered in Avram
and Taqqu [3]. In principle, one can approximate such processes by a sequence of
finite order MA processes, for which Theorem 2.15 applies, and show that the error of
approximation is negligible in the limit. We decided not to pursue this here, since the

functional limit theorem for these processes already appears in [3].
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4.2 ARCH/GARCH models

We consider the model
X, = 0p,2n, (4.23)
where (Z,)nez is a sequence of i.i.d. random variables with EZ; = 0 and Var Z; = 1,
and
02 =ag+ (22 |+ B)o2 . (4.24)
Assume that oy > 0 and the non-negative parameters «y, 3; are chosen such that a

strictly stationary solution to the equation (4.24) exists, namely
—o0 < Eln(olef + ﬁl) <0

(see Goldie [34] and Mikosch and Starica [51]). The process (X,,) is then strictly
stationary too. If oy > 0 and (3; > 0 it is called a GARCH(1,1) process, while if a; > 0

and (1 = 0 it is called an ARCH(1) process.

20
|

10
|

-10

o

200 400 600 800 1000

Figure 4.1: A simulated GARCH(1,1) process with oy = 1, oy = 0.7 and p; = 0.2.
The noise (Zy,) is i.i.d. standard normal.

In the rest of the section we consider a stationary squared GARCH(1,1) process

(X?2). Assume that Z; is symmetric, has a positive Lebesgue density on R and there
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exists a € (0,2) such that
E[(a,Z? +3)* =1 and E[(a1Z? 4+ 51)*In(an Z2 + B1)] < 0.

Then it is known that the processes (02) and (X?2) are regularly varying with index a
and strongly mixing with geometric rate (see Bartkiewicz et al. [6], Basrak et al. [9]
and Mikosch and Stérica [51]). Proposition 3 in Breiman [17]' and Proposition 4.7 in

Bartkiewicz et al. [6] imply
P(X} > ) ~ E|Z|**P(0? > z) ~ E|Z1|**c127%, as xr — 00, (4.25)

where
El(ao + ( Z7 + B1)o?)™ — (u Z7 + 51)"]
aE[(an Z7 + B1)* In(on Z7 + 1))]

The squared GARCH(1,1) process can be embedded in the 2-dimensional stochastic

> 0.

C1 =

recurrence equation (SRE):

X, = A,X,_1 + B,. (4.26)

To see this, write

2 2 2 2
X (M) A (WA AE) ()
o, 631 B (&%)

Then (X,,) satisfies the SRE in (4.26). Stochastic recurrence equations have been
largely studied, see for example Babillot et al. [4], Basrak et al. [9], Bougerol and
Picard [14], Goldie [34], Mikosch and Starica [51]. Write Y = max{Z?,1}. Then
|X1]| = Yo?, where || - || is the "sup” norm on R? Since Y and o? are independent

nonnegative random variables such that EY < oo and o? is regularly varying with

index «, Proposition 3 in Breiman [17] implies

P(||[X.|| > 2) = P(Yo; > 2) ~ EY°P(0? > 1) ~ EYciz™® as x — oo, (4.27)

!Breiman did not prove this result for general «, but only for a € (0,1). However, the proof works
for all a > 0.
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i.e. the random variable [|X;]| is regularly varying with index o.

Assume
E(In||A4]) <0, (4.28)
where for a 2 x 2-matrix A,
1Al = sup |- Al

is the operator norm. One sufficient condition for relation (4.28) to hold is that a; +

(1 < 1. Since E||A4]| < oo, from Remark 2.9 in [9] it follows
E([JA4]) < 1, for some € € (0,a A 1]. (4.29)

In order to show that the sequence (X?) satisfies the anti-clustering condition AC(a,,),
where (a,,) is a sequence of positive real numbers such that nP(X? > a,) — lasn — oo
(from (4.25) it follows that we can take a, = (c;E|Z1|**n)"/®), we first show that this
condition is satisfied by the sequence (X,,), and for this we will use a technique used
in the proof of Theorem 2.10 in [9]. Choose some s € (0,¢/a) and define r,, = [n*].
Then

— — 0, as n — o0o. (4.30)

Iterating (4.26) we obtain

Xz:]jAJXQ+ZZ: f[ AmBj::[i,1X0+[i,27 1 € N.

j=1 j=1 m=j+1

This and the fact that X, and I; » are independent, imply, for an arbitrary u > 0,
P(IXill > uan | [[Xol| > uay)
< PUXoll [ 7]l > uan/2 | [ Xoll > uay) + P(|| Lipl| > uan/2). (4.31)

Then using Markov’s inequality and Theorem 1.12 (note that ||Xy|| is regularly varying

with index «), the limes superior of the first term on the right-hand side of (4.31) is
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bounded above by

X0l tyxoluant] e @ gya peyi (439
a — €

lim sup E([| 7;1/)2°
m sup B(| i) (wa) P ([ Xo|| > wan)

Further, it holds that

i j—1 i j—1
72l 2 | 30 TT AnBs| < 3 TT 1Al 18511

=1 m=1 j=1 m=1

Using Markov’s inequality, the fact that, since € € (0,1), (x1+...+z,) < z{+... 4+
for all n € N and nonnegative x1, ..., z,, and the i.i.d. property of the sequence (Z;),

we get

P(Iliall > uan/2) < a“(2/u) E[Bu]* Y (B Ay
j=1

N

@, (2/w) By« Y (B[l Aq[|).
j=0
= Ca;® (4.33)

n

where C' = (2/u)E[|By || 3272 (E[|A1[[) < oo by (4.29). Since from our assumptions
it follows that the sequence (X,,) is strictly stationary (see for example Basrak et al.

[9] and Kesten [41]), we have
P(X il > uan | [Xo|l > uan) = P(IXi]| > uan | [Xo|l > ua).

This and relations (4.30), (4.31), (4.32) and (4.33), then imply

lim limsupP( max ||X;|| > way, ||| Xo|| > uan>

m—o0 5 o0 <m§|i§'r’n

< lim limsup Y P(IXq]| > uay | [Xol| > uay,)
m—o n—oo

mg|i|<rn
o0
< lim 2¢+1 ¢ (E[| A, )
m—o0 o — € i—m

=0, (4.34)
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where the last equation follows from (4.29). Hence condition AC(a,,) for the sequence

(X,,) holds. Then from (4.25), (4.27) and the fact that || X;|| > X?, we get

lim limsupP( rr|1£‘1x Xf > uay, XO2 >uan)
m—0o0 n-oo m|i|<rn
P(|| Xo|| > ua,
< Ji s P s D> a0l > ) - R
_ 0 EY® _0
" E|Zy2>

Therefore the sequence (X?) satisfies condition AC(ay,).
Define the sequence (1,,) by I, = |n*?2]. If (a,) denotes the sequence of a-mixing
coefficients of (X?2), then since «, converges to zero geometrically fast, standard cal-

culations give, as n — o0,

knog, 41 — 0 and

where k, = |n/r,]. This corresponds to relation (1.17) in the proof of Proposition
1.34. Following the line of the argument in the proof of that proposition, we conclude
that the mixing condition A’(a,) holds.

Since the process (X?) is nonnegative, its tail process cannot have two values of
the opposite sign. If additionally Condition 2.14 holds when « € [1,2), then by Theo-

rem 2.15, the partial sum stochastic process V,,( - ), defined by

o~ X X?
Vo(t) = kz; o LntJE(a—nl fjgl})’ t €10,1], (4.35)
converges in distribution to an a—stable Lévy process V(-) in D[0, 1] under the M,
topology. Here (a,), is a positive sequence such that nP(X? > a,) — 1 as n — oo.

In case a € (0,1)U(1,2), the characteristic triple (0, v, b) of the stable random vari-

able V(1) and thus of the stable Lévy process V(- ) can be determined from Bartkiewicz
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et al. [6, Proposition 4.8], Davis and Hsing [24, Remark 3.1] and Remark 2.17: after

some calculations, we find

v(dz) = ¢y 100y () az™* " dz, b= = a(c+ - 1), (4.36)
where
B[(Z2 + Too) — T2 - t
cL = == o 22+ 4.37
+ E(|Z1|2O‘) Zl H 1 51 ( )

Therefore, the functional limit result for the squares of GARCH(1,1) process is

given in the following proposition.

Proposition 4.2. Let (X,,) be a strictly stationary GARCH(1,1) process defined by
(4.23) and (4.24), where (Z;) is an i.i.d. sequence of random variables with EZ, = 0 and
Var Z1 = 1, and the coefficients ag, aq and (31 are positive. Assume Zy is symmetric,

has a positive Lebesque density on R, and
E[(n Z7 + 51)%] = 1, E[(a1Z2 + B1)* In(an Z2 + 31)] < oo,

for some a € (0,2). Suppose further that E(In ||A4||) < 0 and Condition 2.14 holds

when o« € [1,2). Then the following statements hold.

1. The partial sum process V(- ), defined by (4.35), converges in distribution to an

a-stable Lévy process V() in DI[0,1] under the M, topology.

2. Assume o € (0,1) U (1,2). Then the characteristic triple (0,v,b) of the limiting

process V(- ) is given by (4.36) and (4.57).

4.3 ARMA models

Suppose a strictly stationary sequence (X, ) ez satisfies the ARMA(p,q) recursions

Xn - ¢1Xn71 + tet + ¢an7p + Zn + 91Zn71 + e + qunfq, (438)
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where the coefficients ¢1, ..., ¢,,01,...60, are positive, ®(z) :=1— 12—+ — P2 # 0

for all |z| < 1, and (Z,,) is an i.i.d. sequence of random variables. Assume Z; regularly

200 400 600 800 1000

(]

Figure 4.2: A simulated ARMA(1,1) process with ¢1 = 0.6 and 6, = 1.2. The noise
(Zy) is i.i.d. standard normal.

varying with index a € (0,2) and EZ; = 0 if @ € (1,2). By results in Brockwell and

Davis [18], (X,,) has the causal representation

Xo=> Znj, (4.39)
j=0
where the coefficients 1); can be found from the relation
d(z) Z V2l =14+ 012+ + 0,27 (4.40)
7=0

Assume the sequence (v;) satisfies the following condition
Z |1;|° < oo, for some 0 < 0 < min{1, a}. (4.41)
=0

Then it follows that X is regularly varying with index «,

- P(X, > z) _ > im0 U314 10,00 (V) + ¢ 1(—00,0) ()]
T—00 P(’le > {E) Zjoio ’@Dj’a
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132
and
oy PO < —2) 20520 9517 [0 1000 () + P Lcoc) (7))
z—o0 P(|X1] > 1) > e [sle ’
where
and = lim ————~
1T P(Z > )

(see for instance Lemma A.3 in Mikosch and Samorodnitsky [50]; cf. Cline [21] and

Kokoszka and Taqqu [42]).
Let n € N be arbitrary. For every j > 0 define matrices A,, ; of dimension n x n

and n-dimensional random vectors Z, ; by

Y, 0 0 ... 0

0 ¢ 0 ... 0

A, — 0 0 ¢ ... 0
0 0 0 ... 1
Zn,j = (Zlfj, ZQ,]', ey Zn,j)l.

Then Z,, ; is regularly varying with index « and
DA =Dl < oo
j=0 =0

Now following the line of the argument given in Example 4.1, we conclude that the

random vector
(Xl, e 7Xn) - Z An,jzn,j

j=0

is regularly varying with index . Therefore, the process (X,,) is regularly varying with

index a.
For simplicity we restrict our attention to the ARMA(1,1) model. Note that ®(z) #

0 for all |z| < 1 implies ¢; < 1. From (4.40) we find that o = 1 and ¢; = (¢1+6,) |

for all j € N. Therefore condition (4.41) holds. From the recursions in (4.38) and the
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representation in (4.39) we have, for any i € N,

i—2

XZ' = ¢11X0 + Zl + ((bl + 61) Z ¢’fZi—k—1 + ¢z‘171‘9120

= ¢\ Xo+ > UnZik+ &' 01 2. (4.42)

To check the anti-clustering condition AC(a,) we proceed in the following way. Since

Xo and (Zy)k>1 are independent and the sequence (Z)iez is strictly stationary, we

have
P( max | X;| > ta, || Xo| > tan>
m<i<rn
<P X t(ln X, tan
< (mrgagxngbﬂ of > | 0|>tan> (mfgzagn Z@Dk i— k‘ —>
1 tan
+ P( max 10, Zo| > | Xo| > tan>
n ta,
P (671X, > ta,) +ZP(Zwk|ZZ > =)
m—1 ta”
+ P60 2] > S | 1Xo] > ta)

P> )
(|X0| > tCLn

tan
raP( Z AR ta”) QZO)'(; id’gn?l) (4.43)

where (a,) is a sequence of positive real numbers such that nP(|X,| > a,) — 1 and
(rn) is a sequence of positive integers such that r, — oo and r,/n — 0 as n — oo.
Since X is regularly varying, the first term on the right hand side in (4.43) converges

0 (3¢7")* as n — oo. From Theorem 2.3 in Cline [21] we obtain, as n — oo,

(ZW\Z—M > ta_n>

n tn
_In. nP<|X0| > i)
n

P(1%] > ) PSR tal 74l > %)
3 ) '

P<|X0| > to P<|Z0| > %)
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N
)R- =
and
(lZOl > ) B0y
P(|Xo| > tay) Do ¥
Hence

Qa
limsupP( max | X;| > ta, || Xo| > tan> < 3% <¢‘f‘ + Oo—l)

n—o0 Ligrn ijo %‘a
Letting m — o0, since ¢ < 1, it follows
lim limsupP( max | Xi| > tay, | | Xo| > tan) =0, t>0. (4.45)

From relation (4.42) we see that

li| -1

Xo=¢i'Xi+ Y o+l ‘0z, i<0.

k=0
This leads to
P( max |X;| > ta, || Xo| > tan>
—rpLi<—m

<Y P<|X,»| > ta,

— P(Xi| > ta,, |Xo| > ta,
|X0|>tan>zz (1Xi| > tan, | Xo| > tan)

i=—r i——r P(’X()| > tan)
o [P(1X] > tan, 001X > ) P(IXi] > tan, SUL 0lZ4] > 22)
<
i P(|Xo| > tan) * P([Xo| > tay)

+

P<|Xi| > tay, |1i|_191‘Zi’ > ta?")
P(|X0| > tan) ’

Since X; and (Z_j)o<kgji—1 are independent, we obtain the bound

o P(1%o] > tan, 3}'|Xo| > ta, ) = .
P( 7 .| > _n>
P([Xo| > tay) + Z ZW il

=—Tp 1=—Tn

<

—m P(‘le > tay,, 3¢LZ|7191‘ZZ’ > tan)
t 2 P([Xo| > tay) |

1=—"p

=: Ii(n,m) + Iy(n,m) + I3(n,m). (4.46)
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Take an arbitrary € € (0, ). Then using Markov’s inequality we obtain

_m P<3¢‘1i||X0|1{|X0|>tan} > tan>

I —
1(m,m) P([Xo| > tay)

1=—"Tn

B[ Xo|V{x[>ta,}] Z

(b)) P([Xo| > ta,) &

An application of Theorem 1.12 yields that

lim sup I;(n,m) <

n—o0 o — €

3°) (1),
and since ¢ < 1, letting m — oo, we get

lim limsup [;(n,m) = 0.

m—oo  p—oo

As in (4.44) we obtain

t
lim sup I5(n, m) < limsupr, P (Z%\Z Kl > an) =

n—oo n—oo

Since Xz = ¢1Xi_1 + ZZ + 91Zi_1, we have

| _m P<¢1|Xl )| > o 3¢L“*191|Zi|>mn)
<

I
3(n,m (\XO\ > tay)

1=—7Tn

m P<|Z| >t 300119, 7] >tan>
+ 2 P([Xo] > tar)

Z_—Tn

—m P<91|Z, )| > o 3¢Li"191|zi|>mn)
> B> i) |

I=—Tn

The second term on the right hand side of this inequality can be treated in a similar

li| -1
1

way as I1(n,m). Since Z; and X;_; are independent and qb’ln_l > for all ¢ =

—Tp, ..., —m, it follows that the first term is bounded above by

P(lelXol > %)P(?)QST_IQHZM > tan>
P(| Xo| > ta,) ’

Tn
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which by a standard regular variation argument converges to zero as n — oo. The

same can be done for the third term. Thus

lim limsup I3(n,m) =0,

m—00 n—oo

and from (4.46) we therefore have

lim limsupP< max | X;| > ta,

m—0o0 oo —Trpi<—m

Now relations (4.45) and (4.47) imply condition AC(a,,).

1 Xo| > tan> —0, t>0.

(4.47)

Let (Y},) be the tail process of (X,,). Fix i € N and let ¢ > 0 be arbitrary. Then

from the definition of the tail process in Section 1.3, we have

P(Y; < —¢, Yo > 1) = lim P(X; < —ex, Xo > 2| | Xo| > ).

r—00

Taking into account relation (4.42), the fact that X, and (Z;);>k41 are independent

and the recursion in (4.38), we get

P(X; < —ea,, Xy > a, } | Xo| > an)

P(WiXo + 22—210 UrZig + & 01 Zy < —ean, Xo > CLn)

P(lX()’ > an)
P(Sich vfion + 07020 < —(e+ 9w, Xo > a,)
<
P('X()’ > an)
(ZZ 1()¢k ik < — (E+¢1)an XO > a”) P<Z < _(;;?11):”: Xo > an>
< +
P(|Xo| > an) P(1Xo| > ax)

i1 ;
< P(Z?/szi—k < —%>
k=0

P(Zo < — (;;{;5}1);:, (le_l -+ Z() + 912_1 > an>

_l’_
P(|Xo| > an)
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_(€+¢7i)an an
P(ZO < 26116, X 1> )

P(|Xo| > an)

< PS> )
k=0

P(ZO < —(E—Hﬁ)an ZO > a-”) P(ZO < —(S—Hﬁ)an Z,1 > a_n>

201161 3 26, 01 i
+ +
P(|Xo| > ax) P(1Xo| > an)
o ) _(5+¢Zi)an an
< P(S vz > EEANY P(% <~ )P (X1 > 45)
Y =T P(|Xo > a,)

(e+¢)an an (e+91)an an
P(Z0 < -t 7, > ?> . P(ZO < -t )P(Z_l > E)

P(‘Xo‘ > an) P( Xo‘ > an)

+

A standard regular variation argument (as before in checking condition AC(a,,)) yields
that the first, second and forth term on the right hand side of the last inequality
converge to zero as n — 0o. Since ¢ and 6; are positive, the third term is trivially

equal to zero. Hence
P(X; < —€ay, Xo > a, | |Xo| > a,) — 0, as n — 0o,

and this imply P(Y; < —¢, Yy > 1) = 0 for any € > 0. Since |Yy| > 1 a.s., it follows
P(Y; <0, Yy > 0) =0 for any ¢ > 0. In the same way we obtain P(Y; > 0, ¥; < 0) = 0.
Hence (Y;,)n>0 a.s. has no two values of the opposite sign. The same conclusion can
be obtained for (Y,)n<o, thus yielding the tail process (Y;,)nez a.s. has no two values
of the opposite sign.

Assume that the sequence (X,,) is strongly mixing. One sufficient condition for
this property in our case is that the characteristic function ¢; of Z; is integrable and

satisfies
[1erta)ldo < 2m

see Chanda [19] (some other sufficient conditions for the strong mixing property of

(X,,) can be found in Athreya and Pantula [2] and Mokkadem [52]). Then the mix-
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ing condition A’(a,) holds. If Condition 2.14 holds when « € [1,2), then all con-
ditions in Theorem 2.15 are satisfied and we obtain the functional limit theorem for
the ARMA(1,1) model considered in this section. With the same explanation as in
Section 4.1 and with an additional assumption that Z;io Y = 1, we have that for

€ (0,1)U(1,2), the characteristic triple of the limiting process is of the form (0, v, b),

where

v(de) —@(Z%) || 71 a( (Ooo)(x)+q1(_oo,0)(x))dx, (4.48)

b= (v

[( Z zp]) - 1] . (4.49)

Hence we have proven the following result.
Proposition 4.3. Let (X,,) be an ARMA(1,1) process, i.e.
Xn = ¢1Xn—1 + Zn + len—la

where the coefficients ¢1,01 are positive and ¢1 < 1, and the sequence (Z,) consists
of i.i.d. reqularly varying random variables with index o € (0,2) such that EZ; = 0
if @ € (1,2). Suppose (X,,) is strongly mizing and that Condition 2.14 holds when

€ [1,2). Then the following statements hold.

1. The partial sum process V,,(-), defined by (2.4), converges in distribution to an

a-stable Lévy process V(-) in DI[0,1] under the My topology.

2. Assume a € (0,1)U(1,2) and Y72 9 = 1. Then the characteristic triple of the
limiting process V (-) is of the form (0,v,b), where v and b are given in (4.48)
and (4.49).
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4.4 Stochastic volatility models

Consider the stochastic volatility model
X = onZy, n €z,

where the noise sequence (Z,,) consists of i.i.d. regularly varying random variables
with index of regular variation o € (0,2), and the volatility sequence (o) is strictly
stationary, independent of the sequence (Z,,) and consists of positive random variables

such that E(o3*"") < oo for some r > 0.

An application of the well known Breiman’s lemma [17, Proposition 3] on regularly
varying tail of a product of two independent random variables yields that every ran-
dom variable X, is regularly varying with index a. Assume further that (Ino,), is a
Gaussian causal ARMA process. Then (X,,) is strongly mixing with geometric rate

(see Davis and Mikosch [26]).

Take 0 < s < min{r,4 — 2a}. For any ¢ € N and z > 0 we have by Markov’s

inequality and the fact that the sequence (Z,) is i.i.d.,

P(|Xi| > zay, | Xo| > za,) < P(max{o;,00} min{|Z;|,|Zo|} > xa,)
< P(max{o;, 00} > (wa,)?7*/%) + P(min{| Z|, | Zo|} > (wa,)/***/%)
< (wa,) V2R (max{oy, 00})2T] + [P(| Zo] > (za,)Y*T/%)]?

< (xan)_(l/Q_s/S)(2a+S) . 2E(U(2)a+s) + [P(|Zg| > (xan)l/Z—f—s/S)]Q7

where (a,) is a sequence of positive real numbers such that nP(|X;| > a,) — 1 as

n — oo. Take 0 < p < min{s/8, s(4 — 2a — s)/8a} and define r,, = [n”]. Then
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- ) 200+s —(1/2—s/8)(2a+s)
(2 ny n ~ n n
n E P(|X;i| > zay, | Xo| > za,) < 2E(03*"*)nr,(xa,)
i=1

+ nra[P(|Zo] > (way) 2 %))?
=: Ii(n)+ LIx(n). (4.50)
Since a,, = n*/*L'(n) for some slowly varying function L', we have

Ii(n) < C1n1+p7(1/2*5/8)(2+8/a)L/l (n),

where C; = C)(z) = 2E(05*%)a=(1/2=8/8Q+s) and L) (n) = (L'(n))~(1/273/8)Cats)
From the definition of p we obtain 1+p—(1/2—s/8)(2+s/a) < 0, which by Proposition
1.3.6 in Bingham et al. [13] implies I;(n) — 0 as n — oo.
Take now 0 < k < as/(4+s). Since P(|Zy| > z) = z=*L(x) for some slowly varying
function L, we have
L(n) < Con'™P(a,)/2+/8)(204k) (q \=(U/248/8k [ (70 \(1/2+5/8)]2

= ConltPr(/ZSB2R) [ () e

where Cy = CQ(ZL’) = 1;_204(1/2""5/8)7 L’Q(n) = (L’(n))(1/24‘5/8)(—2&‘*"“)7 and
Cp = (an)—(1/2+s/8)k [L((xan)(1/2+5/8))]2.

From the definitions of p and k it follows that 1+p+(1/2+s/8)(—2+k/a) < 0. Since

also —(1/2+ s/8)k < 0, from Proposition 1.3.6 in [13] we obtain
nl+p+(l/2+s/8)(—2+k/a)L/2 (n> —~0 and Cp — 0’
and hence Iy(n) — 0 as n — oo. Therefore from relation (4.50) it follows

lim NZP(|XJ > zap, | Xo| > xa,) =0, x> 0.
i=1
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Hence relation (3.18) holds.

Therefore, we can apply Theorem 3.7 to obtain the following proposition.

Proposition 4.4. Let (X,,) be a stochastic volatility model, i.e. X, = 0,Z,, where
(Z,) is a i.i.d. sequence of reqularly varying random variables with index o € (0,2),
and the sequence (o,) is independent of the sequence (Z,) and consists of positive
random variables such that E(o?*™) < oo for some r > 0. Assume (Ino,) is a
Gaussian causal ARMA process and that Condition 2.1/ holds for « € [1,2). Then the
partial sum stochastic process V, (), defined by (2.4), converges in distribution, to an
a-stable Lévy process V(- ) in D[0, 1] under the Jy topology. The characteristic triple
of the limiting process Vy( - ) is of the form (0, u,0), where the measure u is the vague

limit of nP(X,/a, € -) as n — 0.

We recall here that one sufficient condition for Condition 2.14 to hold is that the
sequence (X,,) is a function of a Gaussian causal ARMA process, i.e. X,, = f(4,),
for some Borel function f : R — R and some Gaussian causal ARMA process (4,,).
From the results in Brockwell and Davis [18] and Pham and Tran [57] (see also Davis
and Mikosch [26]) it follows that the sequence (A,,) is strongly mixing with geometric
rate. In this particular case this implies that the sequence (A,) is p-mixing with
geometric rate (see Kolmogorov and Rozanov [43, Theorem 2]), a property which
transfers immediately to the series (X, ). Hence by Proposition 2.19, Condition 2.14
holds.






Bibliography

[1] Aue, A., Berkes, I. and Horvath, L. (2008). Selection from a stable box. Bernoulli
14, 125-139.

2] Athreya, K. B. and Pantula, S. G. (1986). A note on strong mixing of ARMA
processes. Statist. Probab. Lett. 4, 187-190.

[3] Avram, F. and Taqqu, M. (1992). Weak convergence of sums of moving averages

in the a—stable domain of attraction. Ann. Probab. 20, 483-503.

[4] Babillot, M., Bougerol, P. and Elie, L. (1997). The random difference equation
X, = A, X,,_1 + B, in the critical case. Ann. Probab. 25, 478-493.

[5] Balan, R. M. and Louhichi, S. (2008). Convergence of Point Processes with Weakly
Dependent Points. J. Theoret. Probab. 22, 955-982.

(6] Bartkiewicz, K., Jakubowski, A., Mikosch, T. and Wintenberger, O. (2010). Stable
limits for sums of dependent infinite variance random variables. To appear in

Probab. Theory Related Fields. Avaliable at: http://arxiv.org/abs/0906.2717

[7] Basrak, B. (2000). The Sample Autocorrelation Function of Non-Linear Time
Series. Ph.D. thesis, Rijksuniversiteit Groningen, Groningen, The Netherlands.

[8] Basrak, B., Davis, R. A. and Mikosch, T. (2002). A characterization of multivariate
regular variation. Ann. Appl. Probab. 12, 908-920.

[9] Basrak, B., Davis, R. A. and Mikosch, T. (2002). Regular variation of GARCH
processes. Stochastic Process. Appl. 99, 95-115.

143



144

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

Basrak, B. and Segers, J. (2009) Regularly varying multivariate time series.
Stochastic Process. Appl. 119, 1055-1080.

Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics, Vol. 121,
Cambridge University Press, Cambridge.

Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons,
New York.

Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular variation.
Cambridge University Press, Cambridge.

Bougerol, P. and Picard, N. (1992). Stationarity of GARCH processes and of some

nonnegative time series. J. FEconometrics 52, 115-127.

Bradley, R. C. (1986). Basic properties of strong mixing conditions. In: Depen-
dence in Probability and Statistics, (E. Eberlein and M.S. Taqqu, eds.), Birkh&user,
Boston, 165-192.

Bradley, R. C. (2005). Basic Properties of Strong Mixing Conditions. A Survey
and Some Open Questions. Probab. Surv., Vol.2, 107-144.

Breiman, L. (1965). On some limit theorems similar to arc-sin law. Theory Probab.

Appl. 10, 323-331.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Metods. 2nd
edition, Springer-Verlag, New York.

Chanda, K. C. (1974). Strong mixing properties of linear stochastic processes. J.
App. Probab. 11, 401-408.

Chow, Y. S. and Teicher, H. (1997). Probability Theory: Independence, Inter-
changeability, Martngales. 3rd edition, Springer-Verlag, New York.



BIBLIOGRAPHY 145

[21] Cline, D. (1983). Infinite series of random variables with regularly varying tails.
Technical Report No. 83-24, Institute of Applied Mathematics and Statistics, Uni-
versity of British Columbia.

[22] Davis, R. A. (1983). Stable limits for partial sums of dependent random variables.
Ann. Probab. 11, 262—-269.

[23] Davis, R. A. and Resnick, S. I. (1985). Limit theory for moving averages of random
variables with regularly varying tail probabilities. Ann. Probab. 13, 179-195.

[24] Davis, R. A. and Hsing, T. (1995). Point process and partial sum convergence
for weakly dependent random variables with infinite variance. Ann. Probab., 23,

879-917.

[25] Davis, R. A. and Mikosch, T. (1998). The sample autocorrelations of heavy-tailed
processes with applications to ARCH. Ann. Statist., 26, 2049-2080.

[26] Davis, R. A. and Mikosch, T. (2009). Probabilistic properties of stochastic volatil-
ity models. In: Anderson, T. G., Davis, R. A., Kreiss, J.-P. and Mikosch, T.
(Eds.). Handbook of Financial Time Series., Springer, 255-268.

[27] Denker, M. and Jakubowski, A. (1989). Stable limit distributions for strongly
mixing sequences. Statist. Probab. Lett., 8, 477-483.

[28] Durrett, R. and Resnick, S. I. (1978). Functional limit theorems for dependent
variables. Ann. Probab. 6, 829-846.

[29] Durrett, R. (1996). Probability: theory and examples. 2nd edition, Duxbury Press,
Wadsworth Publishing Company, USA.

[30] Embrechts, P., Kliippelberg, C. and Mikosch, T. (1997). Modelling Eztremal

FEvents for Insurance and Finance. Springer-Verlag, Berlin.

[31] Feign, P. D., Kratz, M. F. and Resnick, S. I. (1996). Parameter estimation for

moving averages with positive innovations. Ann. Appl. Probab., 6, 1157-1190.



146 BIBLIOGRAPHY

[32] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol.
2, John Wiley & Sons, New York.

[33] Folland, G. B. (1999) Real Analysis: Modern Techniques and Their Applications.
2nd edition, John Wiley & Sons, New York.

[34] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random
equations. Ann. Appl. Probab. 1, 126-166.

[35] Haan, L. de (1970). On Regular Variation and its Application to the Weak Conver-
gence of Sample FExtremes. Mathematical Centre Tract 32, Mathematics Centre,

Amsterdam.

[36] Haan, L. de and Resnick, S. I. (1981). On the observation closest to the origin.
Stochastic Process. Appl. 11, 301-308.

errndort, N. . unctional central limit theorem rtor stron mixing se-
[37] Herrndorf, N. (1985). A f ional | limit th fi gly mixing
quences of random variables. Z. Wahr. verw. Gebiete 69, 541-550.

[38] Hult, H. and Samorodnitsky, G. (2008). Tail probabilities for infinite series of
regularly varying random vectors. Bernoulli 14, 838— 864.

[39] Kallenberg, O. (1983). Random Measures. 3rd edition, Akademie-Verlag, Berlin.

[40] Kallenberg, O. (1997) Foundations of Modern Probability. Springer-Verlag, New
York.

[41] Kesten, H. (1973). Random difference equations and renewal theory for products
of random matrices. Acta Math. 131, 207-248.

[42] Kokoszka, P. and Taqqu, M. (1996). Parameter estimation for infinite variance
fractional ARIMA. Ann. Statist. 24, 1830-1913.

[43] Kolmogorov, A. N. and Rozanov, Y. A. (1960). On strong mixing conditions for
stationary Gaussian process. Theory Probab. Appl. 5, 204-208.



BIBLIOGRAPHY 147

[44]

[45]

[46]

[47]

48]

[49]

[50]

Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy processes
with Applications. Springer-Verlag, Berlin.

Leadbetter, M. R. and Rootzén, H. (1988). Extremal theory for stochastic pro-
cesses. Ann. Probab. 16, 431-478.

LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distri-
bution via order statistics. Ann. Probab. 9, 624—632.

Lin, Z. Y. and Lu, C. R. (1997). Limit Theory for Mizing Dependent Random
Variables. Mathematics and Its Aplication, Springer-Verlag, New York.

Lindskog, F. (2004) Multivariate Extremes and Regular Variation for Stochastic
Processes. Ph.D. thesis, Department of Mathematics, Swiss Federal Institute of
Technology, Zurich.

Merlevede, F. and Peligrad, M. (2000). The functional central limit theorem under
the strong mixing condition. Ann. Probab. 28, 1336-1352.

Mikosch, T. and Samorodnitsky, G. (2000). The supremum of a negative drift
random walk with dependent heavy-tailed steps. Ann. Appl. Probab. 10, 1025—
1064.

Mikosch, T. and Starica, C. (2000). Limit theory for the sample autocorrelations
and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427-1451.

Mokkadem, A. (1990). Propriétés de mélange des processus autorégressifs polyno-

miaux. Ann. Inst. H. Poincaré Probab. Statist. 26, 219-260.

Neveu, J. (1977). Processus ponctuels, in Ecole d’Eté de Probabilités de Saint-
Flour VI-1976, Lecture Notes in Mathematics, Vol. 598, Springer-Verlag, Berlin,
249-445.

Peligrad, M. (1999). Convergence of stopped sums of weakly dependent random
variables. Electron. J. Probab. 4, 1-13.



148 BIBLIOGRAPHY

[55] Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance prin-
ciple for stationary sequences. Ann. Probab. 33, 798-815.

[56] Petrov, V. V. (1995). Limit Theorems of Probability Theory. Oxford University
Press, Oxford.

[57] Pham, T. D. and Tran, L. T. (1985). Some mixing properties of time series models.
Stochastic Process. Appl. 19, 279-303.

[58] Resnick, S. I. (1986). Point processes, regular variation and weak convergence.

Adv. in Appl. Probab. 18, 66-138.

[59] Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes.
Springer-Verlag, New York.

[60] Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic nad Statistical Model-
ing. Springer Science+Business Media LLC, New York.

[61] Rvaceva, E. L. (1962). On domains of attraction of multi-dimensional distribu-
tions. In Select. Transl. Math. Statist. and Probability, Vol. 2, pages 183-205,

American Mathematical Society, Providence, R.I.

[62] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Pro-
cesses. Chapman & Hall, New York.

[63] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge
Studies in Advanced Mathematics, Vol. 68, Cambridge University Press, Cam-
bridge.

[64] Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theor. Probab.
Appl. 1, 261-290.

[65] Skorohod, A. V. (1957). Limit theorems for stochastic processes with independent
increments. Theor. Probab. Appl. 2, 138-171.



BIBLIOGRAPHY 149

[66] Sly, A. and Heyde, C. (2008). Nonstandard limit theorem for infinite variance
functionals. Ann. Probab. 36, 796-806.

[67] Tyran-Kaminska, M. (2009). Convergence to Lévy stable processes under some
weak dependence conditions. To appear in Stochastic Process. Appl.. Avaliable at:

http://arxiv.org/abs/0907.1185

[68] Whitt, W. (2002). Internet Supplement to Stochastic-Process Limits. Available
at: http://www.columbia.edu/~ww2040/supplementno.pdf

[69] Whitt, W. (2002). Stochastic-Process Limits. Springer-Verlag LLC, New York.



150 BIBLIOGRAPHY




Summary

Functional limit theorems present a rich and interesting part of probability theory.
They have been first obtained for independent and identically distributed random
variables with finite second moments. This is the content of Donsker’s theorem (see
for instance Billingsley [12]). One direction of extending these results is to replace the
independence by weak dependence, for example by assuming the underlying random
variables are strongly mixing. The other direction involves studying functional limit
theorems for random variables with infinite second moments. It is well known that
regularly varying random variables with tail index o € (0,2) have infinite second
moments. This thesis is dedicated to both of these two extensions.

More precisely, let (X, )n>1 be a strictly stationary sequence of random variables.
This thesis investigates the asymptotic distributional behavior of the partial sum

stochastic processes
V() = a, (Sps) — |nt)by),  t€]0,1],

under the properties of weak dependence and regular variation with index « € (0, 2),
where S, = X; + -+ + X,,, (a,) is a sequence of positive real numbers such that, as
n — oo,

nP(|X1| > an) — 1,

and
bn = E(X1 1{ix11<a0)-
The stochastic processes that we study have discontinuities, so for the underlying

function space of their sample paths we choose the space D|0, 1] of all right-continuous
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real valued functions on [0,1] with left limits. If the D[0,1]-valued process V()
converges in distribution, we say that the sequence (X,,) satisfies the functional limit
theorem with respect to a certain metric (or topology) on D[0, 1]. The most frequently
used topology on DJ0, 1] is Skorohod’s J; topology. We present three cases for which
functional limit theorems hold with respect to this topology. But there are examples
when the J; topology is not suitable for describing the convergence in distribution
of the partial sum stochastic processes. If we use Skorohod’s M; topology (which is
weaker than J; topology), then in part of these ”problematic” examples we are able
to recover the convergence in distribution of the processes V,,(-) and functional limit
theorems will hold.

A special attention is given to the theory of point processes, since they are the base
for our results. The convergence in distribution of the processes V,,( - ) is obtained from
a new convergence of a special type of time-space point processes through the use of
continuous mapping theorem. A notion that is used throughout the whole thesis is
regular variation. Beside point processes and regular variation, other major notions
that we use are vague convergence, tail process and strong mixing.

The main result of the thesis gives conditions under which a strictly stationary,
regularly varying sequence of random variables with index a € (0,2) satisfies the
functional limit theorem with respect to Skorohod’s M; topology, with the limit being
an a—stable Lévy process, which is characterized in terms of its characteristic triple.

We also investigate conditions under which four applied time series models, namely
MA, squared GARCH(1,1), ARMA(1,1) and stochastic volatility models, satisfy the

functional limit theorem.



Sazetak

Fuunkcionalni grani¢ni teoremi predstavljaju bogato i zanimljivo podrucje teorije vjero-
jatnosti. Prvo su bili dobiveni za slucaj nezavisnih i jednako distribuiranih slucajnih
varijabli koje imaju konacéne druge momente. To je sadrzaj Donskerovog teorema (vidi
Billingsley [12]). Jedan smjer u poopéenju ovih rezultata jest zamjena svojstva nezav-
isnosti slabom zavisno$éu, na primjer pomocu pretpostavke jakog mijesanja. Drugi
mogudéi smjer poopcenja ukljucuje proucavanje funkcionalnih graniénih teorema za
slucajne varijable s beskonacnim drugim momentima. Poznato je da regularno vari-
rajuce slucajne varijable s indeksom « € (0, 2) imaju beskona¢ne druge momente. Ova
disertacija se bavi sa oba smjera.

Preciznije, neka je (X, ),>1 strogo stacionaran niz slucajnih varijabli. Ova dis-

ertacija istrazuje asimptotsko ponasanje distribucija slucajnih procesa parcijalnih suma
Vn(t> = a;zl(SLntJ - \_ntJ bn>7 te {07 1]7

uz uvjete slabe zavisnosti i regularne varijacije sa indeksom a € (0,2), gdje je S, =

X1+ -+ X, (a,) niz pozitivnih realnih brojeva takav da, kada n — oo,

nP(|X1] > a,) — 1,

b, = E(X1 1{|X1|§an}>-

Slucajni procesi koje proucavamo imaju prekide, pa za funkcijski prostor njihovih
putova koristimo prostor D]0, 1] svih zdesna neprekidnih realnih funkcija na [0, 1] sa

limesima slijeva. Ako process V,,(-) konvergira po distribuciji u D[0, 1], kazemo da
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niz (X,) zadovoljava funkcionalan grani¢ni teorem obzirom na pripadnu metriku (ili
topologiju) na D|0,1]. Najcesée koristena topologija na D[0, 1] je Skorohodova J;
topologija. Tri primjera u kojima funkcionalni grani¢ni teoremi vrijede obzirom na
ovu topologiju prezentirana su u disertaciji. Postoje primjeri kada J; topologija nije
pogodna za opis konvergencije po distribuciji slu¢ajnih procesa parcijalnih suma. No
ako upotrijebimo Skorohodovu M; topologiju (koja je slabija od J; topologije), tada
smo u dijelu tih ”problemati¢nih” primjera u moguénosti dobiti konvergenciju po dis-
tribuciji slu¢ajnih procesa V,,(-) i funkcionalni grani¢ni teoremi ¢ée vrijediti.

Poseban je naglasak stavljen na teoriju tockovnih procesa, koji predstavljaju temelj
dobivenih rezultata. Konvergencija po distribuciji slu¢ajnih procesa V,,( - ) je dobivena
iz nove konvergencije jednog specijalnog niza tockovnih procesa koristenjem teorema
o neprekidnom preslikavanju. Pojam koji se koristi kroz cijelu disertaciju je regularna
varijacija. Osim tockovnih procesa i regularne varijacije, ostali vazni pojmovi koje
koristimo jesu slabasna [vague] konvergencija, repni proces i jako mijesanje.

Glavni rezultat disertacije navodi uvjete pod kojima strogo stacionaran, regularno
varirajuci niz slucajnih varijabli s indeksom « € (0, 2) zadovoljava funkcionalni granicni
teorem obzirom na Skorohodovu M; topologiju, s a—stabilnim Lévyjevim procesom kao
limesom, koji je karakteriziran pomocu svoje karakteristicne trojke.

Na kraju disertacije istrazujemo uvjete pod kojima cetiri modela vremenskih nizova,

koji se ¢esto koriste u primjenama, zadovoljavaju funkcionalni grani¢ni teorem.
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