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Introduction

Functional limit theorems for sequences of independent and identically distributed

random variables have been known for quite some time. These theorems can be divided

into two main groups depending on whether the second moments of the underlying

random variables are finite or infinite. The first step toward generalization of these

results is to replace independence by some weak dependence property. Such questions

will be studied in this thesis.

Let (Xn)n>1 be a strictly stationary sequence of random variables and let Sn =

X1 + · · · + Xn, n > 1, denote its corresponding sequence of partial sums. The main

goal of this thesis is to investigate the asymptotic distributional behavior of the D[0, 1]

valued process

Vn(t) = a−1
n (Sbntc − bntcbn), t ∈ [0, 1],

under the properties of weak dependence and regular variation with index α ∈ (0, 2),

where (an) is a sequence of positive real numbers such that

n P(|X1| > an) → 1,

as n →∞, and

bn = E
(
X1 1{|X1|6an}

)
.

Here, bxc represents the integer part of the real number x and D[0, 1] is the space of

real-valued right continuous functions on [0, 1] with left limits.
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2 Introduction

Recall that if the sequence (Xn) is i.i.d. and if there exist real sequences (an) and

(bn) and a non-degenerate random variable S such that as n →∞,

Sn − bn

an

d−→ S, (0.1)

then S is necessarily an α–stable random variable, i.e. the law of X1 belongs to the

domain of attraction of S. Classical references in the i.i.d. case are the books by Feller

[32] and Petrov [56], while in LePage et al. [46] we can find an elegant probabilistic

proof of sufficiency and a nice representation of the limiting distribution.

Weakly dependent sequences can exhibit very similar behavior. In [22], Davis

proved that if a sequence (Xn) of regularly varying random variables with tail index

α ∈ (0, 2) satisfies a strengthened version of Leadbetter’s D and D′ conditions famil-

iar from extreme value theory, then (0.1) holds for some α–stable random variable S

and properly chosen sequences (an) and (bn). These conditions are quite restrictive

however, even excluding some m-dependent sequences. For strongly mixing random

sequences, a necessary and sufficient condition was obtained in Denker and Jakubowski

[27] for the weak convergence of partial sums towards an α–stable distribution. Later,

in [24] Davis and Hsing showed, by point process methods, that sequences which sat-

isfy a regular variation condition for some α ∈ (0, 2) and certain mixing conditions

also satisfy (0.1) with an α–stable limit. Building upon the same point process ap-

proach, Davis and Mikosch [25] generalized these results to multivariate sequences.

Most recently, Bartkiewicz et al. [6] provided a detailed study of the conditions for the

convergence of the partial sums of a strictly stationary process to an infinite variance

stable distribution. They also determined the parameters of the limiting distribution

in terms of some tail characteristics of the underlying stationary sequence.

The asymptotic behavior of the processes Vn( · ) as n →∞ is an extensively studied

subject in the probability literature. In our considerations the index of regular variation
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α will be less than 2, which implies the variance of X1 is infinite. In the finite-variance

case, functional limit theorems differ considerably and have been investigated in greater

depth, see for instance Billingsley [12], Herrndorf [37], Merlevède and Peligrad [49], and

Peligrad and Utev [55].

A very readable proof of the functional limit theorem for i.i.d. sequences of regularly

varying random variables with infinite variance can be found in Resnick [60]. Durrett

and Resnick [28] considered functional limit theorems for dependent random variables

in the context of martingale theory, while Leadbetter and Rootzén [45] studied this

question in the context of extreme value theory. Their functional limit theorems hold

in Skorohod’s J1 topology. However, this choice of topology excludes many important

applied models. Avram and Taqqu [3] obtained a functional limit theorem in D[0, 1]

endowed with Skorohod’s M1 topology for sums of MA processes with nonnegative

coefficients. They also showed why the J1 metric is not always well suited for studying

weak convergence of the processes Vn when the variables Xn are not independent. For

some more recent articles with related but somewhat different subjects we refer to Sly

and Heyde [66] who obtained nonstandard limit theorems for functionals of regularly

varying sequences with long-range Gaussian dependence structure sequences, and also

to Aue et al. [1] who investigated the limit behavior of the functional CUSUM statistic

and its randomly permuted version for i.i.d. random variables which are in the domain

of attraction of a strictly α–stable law, for α ∈ (0, 2).

The main result of this thesis shows that for a strictly stationary, regularly varying

sequence for which clusters of high-threshold excesses can be broken down into asymp-

totically independent blocks, the properly centered partial sum process (Vn(t))t∈[0,1]

converges to an α–stable Lévy process in the space D[0, 1] endowed with Skorohod’s

M1 metric under the condition that all extremes within one such cluster have the same
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sign. In proving this result we combine some ideas used in the i.i.d. case by Resnick

[58, 60] with a new point process convergence result and some particularities of the M1

metric on D[0, 1] that can be deduced from Whitt [69]. This result can be viewed as a

generalization of results in Leadbetter and Rootzén [45], where clustering of extremes

is essentially prohibited, and in Avram and Taqqu [3].

The thesis is organized as follows. In Chapter 1 we introduce notions and tools

which we are going to use in studying functional limit theorems. In Section 1.1 we

define and list some basic properties of vague convergence of measures. Using this

concept, in Section 1.2 we introduce regular variation and list some well known results

connected with it. The property of regular variation, which will be the key notion in

our considerations, has been studied extensively in the past; see for instance Bingham

et al. [13], de Haan [35], de Haan and Resnick [36], Resnick [58] and Rvačeva [61].

Section 1.3 gives one characterization of regularly varying processes in terms of their

tail processes; see Basrak and Segers [10]. In Section 1.4 is given a brief introduction to

point process theory. The emphasis is on convergence in distribution of point processes

and its characterization by convergence of corresponding Laplace functionals. A special

attention is given to the Poisson random measure which will play an important role

in the subsequent chapters. For a detailed overview on point processes we refer to

Kallenberg [39]. Section 1.5 introduces several concepts of dependence, including α–

mixing, ρ–mixing, and a new mixing condition, namely the mixing condition A′(an),

which will be used in functional limit theorems as a measure of dependence. In Section

1.6 we present a result concerning the convergence in distribution of a special type of

point processes, which will be used in the proofs of our main results. The limits in our

functional limit theorems will be Lévy processes, and therefore Section 1.7 contains

some basic notions and results from the theory of Lévy processes.
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Chapter 2 is the main part of this thesis. In Section 2.1 we introduce the space

D[0, 1], which will serve as the space of sample paths of stochastic processes we will

consider. We equip this space with Skorohod’s M1 and J1 metrics and discus the

differences between them. We refer to Whitt [68, 69] for a detailed discussion on this

concepts. Section 2.2 is concerned with the summation functional and its continuity

with respect to the M1 topology. In Section 2.3 is proven the main result of this thesis.

It gives conditions under which the partial sum stochastic process Vn( · ) converges

in distribution to a stable Lévy process in D[0, 1] under the M1 topology. It also

characterizes the limiting process in terms of its characteristic triple. Section 2.4

provides discussion about the conditions and conclusions of the theorem proven in the

previous section. It gives also a explanation why the M1 topology can not be replaced

here by the J1 topology.

In Chapter 3 we deal with cases when functional limit theorems hold with the J1

topology. In Section 3.1 we present the result by Resnick [60] which gives the functional

limit theorem for independent and identically distributed regularly varying random

variables. This result is partially used in Section 3.2 in deriving the corresponding

functional limit theorem for the case when the random variables are dependent, but

have isolated extremes. Another case when the J1 topology is good enough is when

we alter the definition of the partial sum process in an appropriate way. This is the

content of Section 3.3.

Chapter 4 is devoted to some particular time series models, namely MA, GARCH,

ARMA and stochastic volatility models. To these models we apply the obtained results

and obtain sufficient conditions for functional limit theorems to hold for each of these

models.





Chapter 1

Notions and tools

In this chapter we introduce notions and tools that serve as a base for the subsequent

chapters. In particular, we put our attention on regular variation, point processes

and convergence of point processes under weak dependence. We also collect various

results concerning these notions. Some of them are of independent interest, but all of

them will play an important role in proving functional limit theorems in the following

chapters.

1.1 Vague convergence

Let E = R \ {0}, where R = [−∞,∞]. For x, y ∈ E define

ρ(x, y) = max
{∣∣∣ 1

|x| −
1

|y|
∣∣∣, |sign x− sign y|

}
. (1.1)

Then (E, ρ) is a locally compact, complete and separable metric space, and

B(R) ∩ (R \ {0}) = B(E) ∩ (R \ {0}), 1 (1.2)

where B(E) denotes the Borel σ-algebra generated by the ρ-open sets, while B(R) de-

notes the standard Borel σ-algebra generated by the open sets in the euclidian topology

(for a proof of these statements we refer to Theorem 1.5 in Lindskog [48]). Relation

1For B ⊆ X we put B(X) ∩B := {A ∩B : A ∈ B(X)}.

7
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(1.2) tells us that on R \ {0} the Borel σ-algebra B(E) coincides with the usual Borel

σ-algebra B(R), i.e. the Borel sets we are interested in are the usual Borel sets (the

points of R \ R will be of no interest apart from being a part of the modified state

space which will enable us to use the notion of vague convergence). We say a set B is

bounded away from origin if 0 /∈ B, where B denotes the closure of B.

Proposition 1.1. Every set B ∈ B(R) bounded away from origin (in the euclidian

topology) is relatively compact, i.e. its closure B is compact (in the topology induced

by the metric ρ).

Proof. Assume B ∈ B(R) is bounded away from origin. Then B ⊆ R\ [−a, a] for some

a > 0. Since in a complete metric space a subset is relative compact if and only if it

s totally bounded (see for instance Theorem 0.25 in Folland [33]), it suffices to show

that B is totally bounded, i.e. for every ε > 0, B can be covered by finitely many balls

of radius ε.2 Write B1 = B ∩ (a,∞) and B2 = B ∩ (−∞,−a). Then B = B1 ∪B2. To

show that B is totally bounded it is clear that it is sufficient to show that B1 and B2

are totally bounded. Let show this for B1 (for B2 it can be shown in the same way).

We distinguish two cases:

(i) If 1/2ε < a, then

(a,∞) ⊆
( 1

2ε
,∞

)
⊆ Kρ

(1

ε
, ε

)
.

(ii) If 1/2ε > a, let x1 < a 6 x2 < x3 < . . . < xm−1 < xm = 1/2ε such that

xi − xi−1 = a2ε/3 for every i = 2, . . . , m. Then

[xi−1, xi] ⊆
( xi

1 + xiε
, xi

]
⊆ Kρ(xi, ε),

for every i = 2, . . . , m, which implies

(a,∞) ⊆ Kρ

(1

ε
, ε

)
∪Kρ(x2, ε) ∪ · · · ∪Kρ(xm, ε).

2If x ∈ E and r > 0, the (open) ball of radius r about x is the set Kρ(x, r) = {y ∈ E : ρ(x, y) < r}.
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In both cases B1 is covered by finitely many balls of radius ε. Therefore B1 is totally

bounded. This completes the proof.

A nonnegative measure µ on (E,B(E)) is called Radon if µ(B) < ∞ for all relatively

compact B ∈ B(E). Define

M+(E) = {µ : µ is a Radon measure on (E,B(E))}.

On the set M+(E) we introduce a topology in the following way. Let C+
K(E) denote

the class of all nonnegative continuous real functions on E with compact support,3 i.e.

C+
K(E) = {f : E→ [0,∞) : f is continuous with compact support}.

The class of all finite intersections of sets of the form {µ ∈ M+(E) : a <
∫
E f(x) µ(dx) <

Figure 1.1: An example of a function from C+
K(E).

b} with arbitrary f ∈ C+
K(E) and a, b ∈ R form a base for a topology on M+(E). The

topology with this base is called the vague topology. This topology is metrizable and

one measure that induces this topology is given by

dv(µ1, µ2) =
∞∑

k=1

2−k

[
1− exp

{
−

∣∣∣∣
∫

E
fk(x) µ1(dx)−

∫

E
fk µ2(dx)

∣∣∣∣
}]

, (1.3)

for some sequence of functions fk ∈ C+
K(E). This metrization is complete and separable

(see Kallenberg [39, p. 170]). Note that a sequence (µn) of measures in M+(E) converges

3The support of a function f is the set supp(f) = {x ∈ E : f(x) 6= 0}.
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to µ ∈ M+(E) in the vague topology (or vaguely : written µn
v−→ µ) if and only if

∫
E f(x) µn(dx) → ∫

E f(x) µ(dx) for every f ∈ C+
K(E).

This convergence may hold also for some non-continuous functions, which is the

statement of the following result (see Kallenberg [39], 15.7.3).

Proposition 1.2. Let µ, µ1, µ2, . . . ∈ M+(E) with µn
v−→ µ as n → ∞. Then, as n →

∞,
∫
E f(x) µn(dx) → ∫

E f(x) µ(dx), for every bounded measurable function f : E →
[0,∞) with compact support satisfying µ(Df ) = 0.4

If we replace the space M+(E) by the subspace consisting of all finite measures in

M+(E), and C+
K(E) by the class of all bounded continuous real functions on E, we obtain

the weak topology. Then a sequence (µn) converges to µ in this topology (or weakly :

written µn
w−→ µ) if and only if

∫
E f(x) µn(dx) → ∫

E f(x) µ(dx) for every bounded and

continuous function f : E→ [0,∞). It is obvious that weak convergence implies vague

convergence. By the following result, for finite measures under an additional condition,

the converse also holds (see Kallenberg [39], 15.7.6).

Proposition 1.3. Suppose µ, µ1, µ2, . . . ∈ M+(E) are bounded measures. Then µn
w−→ µ

if and only if µn
ν−→ µ and µn(E) → µ(E).

Vague convergence is equivalent with convergence of measures of a special class of

relatively compact sets. The precise statement is given in the following theorem (for a

proof see Kallenberg [39], 15.7.2).

Theorem 1.4. Let µ, µ1, µ2, . . . ∈ M+(E). Then the following statements are equiva-

lent.

(i) µn
v−→ µ,

4Df is the set of discontinuity points of the function f .
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(ii) µn(B) → µ(B) for every relatively compact set B ∈ B(E) such that µ(∂B) = 0,

(iii) lim supn→∞ µn(F ) 6 µ(F ) and lim infn→∞ µn(G) > µ(G) for every compact F ∈
B(E) and every open relatively compact G ∈ B(E).

All notions introduced in this section can be generalized to the multidimensional

case. Our state space, in d-dimensional case, then become Ed = Rd \ {0}. Then there

exists a metric ρ on Ed such that (Ed, ρ) is a locally compact, complete and separable

metric space. In an obvious manner we can directly generalize all the remaining notions

and results in this section to the d-dimensional case (for details see Kallenberg [39] or

Lindskog [48]). The concept of vague convergence can be generalized to an arbitrary

locally compact topological space with countable base (see Kallenberg [39] or Resnick

[60]).

1.2 Regular variation

In this section we will introduce the notion of regular variation for random vectors

and give some basic results concerning regular variation. Next we will generalize this

notion to sequences of random variables.

Definition 1.5. A d-dimensional random vector X is regularly varying if there

exists a sequence (an) of positive 5 real numbers tending to ∞ and a nonzero Radon

measure µ on (Ed,B(Ed)) with µ(Rd \ Rd) = 0 such that, as n →∞,

n P
(X

an

∈ ·
)

v−→ µ(·). (1.4)

Many facts about regular variation are known from the works of Feller [32], de Haan

[35], de Haan and Resnick [36], Resnick [58] and Rvačeva [61]. More recent references

5A real number x is positive if x > 0, and negative if x < 0.
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are for instance Basrak [7], Basrak et al. [8] and Lindskog [48]. Here we give a theorem

in which we collect some of these facts that we are going to use in the following

sections. First we give an equivalent formulation of regular variation in terms of weak

convergence of finite measures on (Sd−1,B(Sd−1)), where Sd−1 = {x ∈ Rd : ‖x‖ = 1} is

the unit sphere in Rd, with ‖ · ‖ being an arbitrary (and fixed) norm on Rd. Second

we write down some basic properties of the limiting measure µ from (1.4).

Theorem 1.6. (i) Let X be an Rd-valued random vector. Then X is regularly vary-

ing if and only if there exist an α > 0 and a probability measure σ on B(Sd−1)

such that, for every x > 0, as u →∞,

P(‖X‖ > ux,X/‖X‖ ∈ ·)
P(‖X‖ > u)

w−→ x−ασ(·), (1.5)

(ii) The limiting measure µ in (1.4) has the following property: there exists an α > 0

such that

µ(uB) = u−αµ(B)

for every u > 0 and B ∈ B(Ed).6

(iii) For the measure µ it also holds that

(1) µ(uSd−1) = 0 for every u > 0;

(2) µ({x}) = 0 for every x ∈ Ed;

(3) µ(∂Vu,S) = µ(Vu,∂S) for every u > 0 and S ∈ B(Sd−1), where Vu,S = {x ∈
Rd : ‖x‖ > u, x/‖x‖ ∈ S};

(4) µ(V0,{s}) = 0 for all but at most countably many s ∈ Sd−1.

For the proof of this theorem we refer to Theorem 2.1.8 in Basrak [7] and theorems

1.8, 1.14 and 1.15 in Lindskog [48].

6This α is the same as in (1.5).
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Definition 1.7. The number α in (1.5) is called the index of regular variation of

X, while the probability measure σ is called the spectral measure of X.

Proposition 1.8. Suppose the random vector X is regularly varying with index of

regular variation α > 0. Then

P(‖X‖ > x) = x−αL(x) for every x > 0, (1.6)

where L is a slowly varying function, i.e. for every t > 0, L(tx)/L(x) → 1 as x →∞.

Proof. We have to prove that the function L defined by L(x) = xαP(‖X‖ > x) is

slowly varying. Take an arbitrary t > 0. Then using relation (1.5) we obtain

L(tx)

L(x)
= tα · P(‖X‖ > tx)

P(‖X‖ > x)
→ tα · t−α = 1,

as x →∞.

Remark 1.9. The sequence (an) that appears in Definition 1.5 is not unique. However,

it satisfies the following asymptotic relation

abλnc
an

→ λ1/α as n →∞.

Therefore it can be represented as

an = n1/αL′(n),

where L′ is a slowly varying function. We shall often choose the sequence (an) such

that nP(‖X‖ > an) → 1 as n →∞ (it suffices to take an to be the 1− 1/n quantile of

the distribution function of ‖X‖, for n > 2).



14 Chapter 1. Notions and tools

Remark 1.10. Rewriting the statement of Theorem 1.6 (i) in the 1-dimensional case

we obtain that the random variable X is regularly varying if and only if there exist

α > 0 and p ∈ [0, 1] such that, for every x > 0, as u →∞,

P(X > ux)

P(|X| > u)
→ px−α and

P(X < −ux)

P(|X| > u)
→ qx−α, (1.7)

where q = 1− p. The limit measure µ from relation (1.4) is then of the form

µ(dx) = (pαx−α−11(0,∞)(x) + qα(−x)−α−11(−∞,0)(x)) dx, (1.8)

while the spectral measure σ is given by σ({1}) = p and σ({−1}) = q.

If X1, . . . , Xn are independent and identically distributed regularly varying random

variables with index of regular variation α > 0 then it is known that the n-dimensional

random vector X = (X1, . . . , Xn) is regularly varying with the same index and his

spectral measure concentrates on the points of intersection of the unit sphere with the

axes. For the sake of illustration we shall prove this here for n = 2 (see Lemma 7.2 in

Resnick [60] for a different proof of this result, but for nonnegative components only).

For r > 0 let Br = {x ∈ R : |x| < r}.

Proposition 1.11. Suppose X1 and X2 are independent and identically distributed

random variables, regularly varying with index α > 0. Then the random vector X =

(X1, X2) is regularly varying with index α, and the spectral measure of X is concentrated

on the following points (1, 0), (0, 1), (−1, 0), (0,−1).

Proof. Take the sequence (an) such that nP(|X1| > an) → 1 as n → ∞. Then from

the setting in Remark 1.10 it follows that, for any r > 0,

nP(|X1| > ran) → r−α as n →∞.
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Take now ε1 > 0 and ε2 > 0. Since

nP(a−1
n X ∈ Bc

ε1
×Bc

ε2
) = nP(|X1| > ε1an)P(|X2| > ε2an)

→ 0,

as n →∞, it follows that nP(a−1
n X ∈ ·) v−→ µ̂(·) as n →∞, where µ̂ is a Radon measure

on (E2,B(E2)) which concentrates on ({0} × R) ∪ (R × {0}) and for any B ∈ B(E),

µ̂({0}×B) = µ̂(B×{0}) = µ(B), where µ is the limiting measure of regular variation

of X1 (and X2), i.e. nP(a−1
n X1 ∈ ·) v−→ µ(·). For an arbitrary r > 0, by Theorem 1.6

(ii), we have

µ̂((r,∞)× E) = µ̂((r,∞)× {0}) = µ((r,∞)) = r−αµ((1,∞)).

In particular, for r = 1, µ̂((1,∞)× E) = µ((1,∞)). Therefore

µ̂((r,∞)× E) = r−αµ̂((1,∞)× E),

and we may conclude that the index of regular variation of X is α.

Assume now the spectral measure σ of X1 (and X2) is of the form σ({1}) = p ∈ [0, 1]

and σ({−1}) = q = 1 − p. Let us find the spectral measure σ̂ of X. Let ‖ · ‖ be the

so-called ”sup” norm on R2, i.e. ‖(x1, x2)‖ = max{|x1|, |x2|}. First of all note that

from nP(|Xi| > an) → 1 as n → ∞ for i = 1, 2, it follows that nP(‖X‖ > an) → 2.

Thus by relation (1.5) we obtain that, as n →∞,

nP(‖X‖ > an, X/‖X‖ ∈ S) → 2σ̂(S), (1.9)

for every S ∈ B(S1) such that σ̂(∂S) = 0. Since for all but at most countably many

s ∈ S1, σ̂({s}) = 0, we can find a sequence of points (xk, yk) in S1∩{(x, y) ∈ R2 : x, y >

0} such that σ̂({(xk, yk)}) = σ̂({(xk,−yk)}) = 0 for every k ∈ N and (xk, yk) → (1, 0)

as k → ∞ in the ‖ · ‖ norm. Let Sk be the connected closed subset of S1 with edges
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in the points (xk, yk) and (xk,−yk) which contains the point (1, 0), i.e. Sk = {(x, y) ∈
S1 : x > xk}. Then, since σ̂(∂Sk) = σ̂({(xk, yk), (xk,−yk)}) = 0, from relation (1.9) we

obtain that, as n →∞,

nP(‖X‖ > an, X/‖X‖ ∈ Sk) → 2σ̂(Sk), for all k ∈ N.

On the other hand, since µ̂ is concentrated on the axes, by Theorem 1.6 (iii) we have

µ̂(∂V1,Sk
) = µ̂(V1,∂Sk

) = 0. Hence

nP(‖X‖ > an, X/‖X‖ ∈ Sk) = nP(a−1
n X ∈ V1,S)

→ µ̂(V1,S) = µ̂((1,∞)× {0}),

as n →∞. Comparing the last two equations we conclude that

µ̂((1,∞)× {0}) = 2σ̂(Sk)

for all k ∈ N. Since

µ̂((1,∞)× {0})) = µ((1,∞)) = lim
n→∞

nP(X1 > an) = p,

it follows that σ̂(Sk) = p/2 for all k ∈ N. Since the sets Sk, as k tends to ∞, form a

decreasing sequence that shrinks to the point (1, 0), using the continuity probability

property with respect to a decreasing sequence of sets, we obtain that σ̂({(1, 0)}) = p/2,

and in the same manner, σ̂({(0, 1)}) = p/2, σ̂({(−1, 0)}) = q/2 and σ̂({(0,−1)}) =

q/2. In particular we proved the spectral measure is concentrated on the points of

intersection of the unit sphere S1 with the axes.

In regular variation theory an important role plays the relation between the tails

and the truncated moments of regularly varying random variables. The following result

gives this relation which we shall use a couple of times in forthcoming chapters. It is

based on Karamata’s theorem (Theorem 1 in Feller [32, p. 273]; see also Theorem

1.5.11 in Bingham et al. [13]).
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Theorem 1.12. Suppose the random variable X is regularly varying with index of

regular variation α > 0. Then, as x →∞,

E
(|X|λ1{|X|>x}

)

xλP(|X| > x)
→ α

α− λ
if 0 < λ < α, (1.10)

and

E
(|X|λ1{|X|6x}

)

xλP(|X| > x)
→ α

λ− α
if λ > α. (1.11)

Proof. If λ ∈ (0, α), then by Lemma 5.7 in Durrett [29, p. 43] and Theorem 1 in Feller

[32] we have

E
(|X|λ1{|X|>x}

)

xλP(|X| > x)
=

∫∞
0

λyλ−1P
(|X|1{|X|>x} > y

)
dy

xλP(|X| > x)

=

∫ x

0
λyλ−1P

(|X| > x
)
dy

xλP(|X| > x)
+

∫∞
x

λyλ−1P
(|X| > y

)
dy

xλP(|X| > x)

= 1 + λ

∫∞
x

yλ−1P
(|X| > y

)
dy

xλP(|X| > x)

→ 1 +
λ

α− λ
=

α

α− λ
as x →∞.

If λ > α then using again Lemma 5.7 in [29] and the fact that for y ∈ (0, x)

P(|X| > y) = P(|X| > y, |X| > x) + P(|X| > y, |X| 6 x)

= P(|X| > x) + P
(|X|1{|X|6x} > y

)
,

we obtain that

E
(|X|λ1{|X|6x}

)

xλP(|X| > x)
=

∫∞
0

λyλ−1P
(|X|1{|X|6x} > y

)
dy

xλP(|X| > x)

=

∫ x

0
λyλ−1P

(|X|1{|X|6x} > y
)
dy

xλP(|X| > x)

=

∫ x

0
λyλ−1P

(|X| > y
)
dy

xλP(|X| > x)
−

∫ x

0
λyλ−1P

(|X| > x
)
dy

xλP(|X| > x)

= λ

∫ x

0
yλ−1P

(|X| > y
)
dy

xλP(|X| > x)
− 1.



18 Chapter 1. Notions and tools

Now an application of the above mentioned Theorem 1 in [32] yields that

E
(|X|λ1{|X|6x}

)

xλP(|X| > x)
→ λ

λ− α
− 1 =

α

λ− α
as x →∞.

Next we define the regular variation property for random processes.

Definition 1.13. We say a random process (Xn)n∈Z is regularly varying with index

α > 0 if all its finite-dimensional distributions are regularly varying with index α.

Remark 1.14. From Definition 1.13 we have immediately that a strictly stationary

sequence of random variables (Xn) is regularly varying with index α > 0 if for every

k ∈ N the random vector (X1, . . . , Xk) is regularly varying with index α. In particular,

for every n the random variable Xn is regularly varying with index α.

Remark 1.15. From Proposition 1.11 (and its generalization to arbitrary finite-dimensional

random vectors with independent, identically distributed and regularly varying compo-

nents) it follows that if (Xn) is a sequence of i.i.d. regularly varying random variables

with index α > 0, then the random process (Xn) is regularly varying with index α.

1.3 Tail process

The following result provides a useful characterization of regular variation for strictly

stationary processes.

Theorem 1.16. (Basrak and Segers [10], Theorem 2.1) Let (Xn)n∈Z be a strictly

stationary process in R and let α ∈ (0,∞). Then (Xn) is regularly varying of index

α if and only if there exists a process (Yn)n∈Z in R with P(|Y0| > y) = y−α for y > 1

such that, as x →∞,

(
(x−1Xn)n∈Z

∣∣ |X0| > x
) fidi−→ (Yn)n∈Z, (1.12)
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where ”
fidi−→” denotes convergence of finite-dimensional distributions.

Definition 1.17. The process (Yn)n∈Z that appears in Theorem 1.16 is called the tail

process of a strictly stationary regularly varying random process (Xn)n∈Z.

Write Θn = Yn/|Y0| for n ∈ Z. If (Xn)n∈Z is regularly varying, by Corollary 3.2 in

Basrak and Segers [10]

(
(|X0|−1Xn)n∈Z

∣∣ |X0| > x
) fidi−→ (Θn)n∈Z. (1.13)

The process (Θn)n∈Z is independent of |Y0| (see Theorem 3.1 in [10]), and by relations

(1.5) and (1.13), the law of Θ0 ∈ S0 = {−1, 1} is the spectral measure of X0. Thus we

call the process (Θn)n∈Z the spectral process of (Xn)n∈Z.

Example 1.18. Suppose (Xn) is a strictly stationary regularly varying process with

index α > 0 consisting of independent random variables. Its tail process has a very

simple representation. Fix k ∈ Z \ {0} and let r > 0 arbitrary. From relation (1.12)

we obtain that

P(|Yk| > r) = lim
n→∞

P(|Xk| > ran

∣∣ |X0| > an) = lim
n→∞

P(|Xk| > ran)

= 0,

where the last equation is a direct consequence of relation (1.4). Since r > 0 is

arbitrary it follows that Yk = 0 for every k ∈ Z \ {0}. From relation (1.12) and the

regular variation property of X0 we obtain that P(|Y0| > y) = y−α for y > 1. Therefore

Y0 = Θ0|Y0|, where the law of Θ0 is the spectral measure of X0, ln |Y0| has exponential

distribution with parameter α, and Θ0 and |Y0| are independent.

1.4 Point processes

In studding functional limit theory the notion of point process will be very useful.

Our functional limit theorems will relay on convergence of a specific sequence of point
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processes. In this section we introduce the basic notions and results on point processes

which will be used later on. For more background on the theory of point processes we

refer to Kallenberg [39] and Resnick [60].

Let X be a locally compact Hausdorff topological space with countable base and

B(X) its Borel σ-field. As in Section 1.1 denote by M+(X) the space of Radon measures

on (X,B(X)) endowed with vague topology. A Radon point measure is an element of

M+(X) of the form m =
∑∞

i=1 δxi
, where δx is the Dirac measure:

δx(A) =

{
1, x ∈ A,

0, otherwise,

for every A ∈ B(X). Let Mp(X) denote the set of all Radon point measures on

(X,B(X)). Since Mp(X) is a subset of M+(X) we endow it with the relative topol-

ogy. Let Mp(X) be the Borel σ-field of subsets of Mp(X) generated by open sets.

Definition 1.19. A point process on X is a measurable mapping from a given prob-

ability space to the measurable space (Mp(X),Mp(X)).

Example 1.20. A standard example of point process is the Poisson process. Suppose

µ is a given Radon measure on (X,B(X)). We say N is a Poisson process with mean

(intensity) measure µ or, synonymously, a Poisson random measure (PRM(µ)), if it

satisfies the following conditions:

(i) for every A ∈ B(X) and nonnegative integer k,

P(N(A) = k) =

{
e−µ(A)µ(A)k

k!
, µ(A) < ∞,

0, otherwise,

(ii) if A1, . . . , Ak are mutually disjoint subsets of X, then N(A1), . . . , N(Ak) are in-

dependent random variables.
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When X is a finite-dimensional Euclidian space Rd or one of its topological subsets

and the mean measure µ is a multiple of Lebesgue measure, we call the process homo-

geneous. Therefore in the homogeneous case, for any Borel set A, N(A) is a Poisson

random variable with mean EN(A) = λLEB(A), for some λ > 0, where LEB(A) is the

Lebesgue measure of A. The parameter λ is called the rate (or the intensity) of N .

Figure 1.2: Point processes can be viewed as collections of randomly placed points in
the state space. Here is given an example of a point process N , yielding N(A) = 4.

Next we define the notion of convergence in distribution for point processes in the

usual way.

Definition 1.21. We say a sequence of point processes (Nn) on X converges in

distribution to a point process N on X, and write Nn
d−→ N , if Ef(Nn) → Ef(N) for

every bounded continuous function f : Mp(X) → R.

Let B+ denote the set of bounded measurable functions f : X 7→ [0,∞). For f ∈ B+

and µ ∈ Mp(X), we use the notation

µ(f) =

∫

X
f(x)µ(dx).

Thus for m =
∑∞

i=1 δxi
∈ Mp(X),

m(f) =

∫

X
f(x)m(dx) =

∞∑
i=1

f(xi).
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In dealing with distributions of point processes a very useful transform technique is

the Laplace functional.

Definition 1.22. Let N be a point process on X. The Laplace functional of N is

the nonnegative function on B+ given by

ΨN(f) = Ee−N(f), f ∈ B+.

The distribution of a given point process N is uniquely determined by the values

of its Laplace functional ΨN(f), f ∈ C+
K(X) (see Theorem 3.1 in Kallenberg [39]). The

next result gives the characterization of convergence in distribution of point processes

by convergence of Laplace functionals on C+
K(X) (see Kallenberg [39], Theorem 4.2).

Theorem 1.23. Let N, N1, N2, . . . be point processes on X. Then Nn
d−→ N if and only

if ΨNn(f) → ΨN(f) for every f ∈ C+
K(X).

Example 1.24. Here we give the Laplace functionals in three special cases:

(1) Let µ0 ∈ Mp(X). Define the point process N to be identically µ0, i.e. if (Ω,F , P)

is the underlying probability space then N(ω) = µ0 for every ω ∈ Ω. The Laplace

functional of N at f ∈ B+ is then given by

ΨN(f) =

∫

Ω

e−N(ω)(f) dP(ω) = e−µ0(f).

(2) Suppose X1, . . . , Xn are i.i.d. random elements in X and define the point process

N by

N =
n∑

i=1

δXi
.

Its Laplace functional is of the following form

ΨN(f) = Ee−N(f) = Ee−
Pn

i=1 f(Xi) =
(
Ee−f(X1)

)n
, f ∈ B+.
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(3) The Laplace functional of a Poisson process N with mean measure µ can be

calculated as

ΨN(f) = exp
{
−

∫

X
(1− e−f(x)) µ(dx)

}
, f ∈ B+

(see for instance Theorem 5.1 in Resnick [60]).

The next result tells us when we can enlarge the dimension of the points of the

sequence of point processes which converges to a Poisson random measure and retain

the Poisson structure in the limit. For a proof see Lemma 4.3 in Resnick [58].

Lemma 1.25. Let X1 and X2 be two locally compact Hausdorff topological spaces with

countable base. Suppose (Xk) and (Yn, k) are random elements of X1 and X2 respec-

tively. If (Xk) is an i.i.d. sequence of random elements, such that for every n ∈ N the

families (Xk) and (Yn, k)k are independent, and if, as n →∞,

n∑

k=1

δYn, k

d−→ PRM(µ),

on X2, then as n →∞,

n∑

k=1

δ(Xk, Yn, k)
d−→ PRM(P (X1 ∈ ·)× µ)

on X1 × X2.

In Section 3.1 we will need the following two results. The first one gives a sufficient

condition for two sequences of points processes to be close in probability with respect to

the vague metric introduced in (1.3), while the second one describes the convergence

of a point process formed from a triangular array of random variables to a Poisson

random measure.
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Proposition 1.26. Suppose (Nn) and (N ′
n) are two sequences of point processes on X

such that for every f ∈ C+
K(X), as n →∞,

|Nn(f)−N ′
n(f)| P−→ 0.

Then dv(Nn, N
′
n)

P−→ 0 as n →∞, where dv is the vague metric given in (1.3).

Proof. Let ε, δ > 0 be arbitrary. Since the series
∑∞

k=1 2−k converges, there exists an

k0 = k0(δ) ∈ N such that
∞∑

k=k0+1

2−k 6 δ

2
.

For every k = 1, . . . , k0 it holds that |Nn(fk)−N ′
n(fk)| P−→ 0 as n →∞, where (fk) are

the functions from relation (1.3). Thus there exists an n0 = n0(ε, δ) ∈ N such that for

every k = 1, . . . , k0,

P
(
|Nn(fk)−N ′

n(fk)| > δ

2k0

)
<

ε

k0

, n > n0.

Then using the inequality 1− e−x 6 x∧ 1 for x > 0, where s∧ t denotes min{s, t}, we

obtain for every n > n0,

P(dv(Nn, N
′
n) > δ) = P

( ∞∑

k=1

2−k[1− e−|Nn(fk)−N ′
n(fk)|] > δ

)

6
k0∑

k=1

P
(
|Nn(fk)−N ′

n(fk)| > δ

2k0

)
+ P

( ∞∑

k=k0+1

2−k >
δ

2

)

< k0 · ε

k0

= ε,

showing that dv(Nn, N ′
n)

P−→ 0.

Proposition 1.27. Suppose (Yn, k) are random elements of X, such that for every

n ∈ N, Yn, 1, Yn, 2, Yn, 3, . . . are i.i.d. and

mnP(Yn, 1 ∈ ·) v−→ ν(·), (1.14)
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as n → ∞, where (mn) is a sequence of nonnegative integers such that mn → ∞ and

ν is a Radon measure. Then, as n →∞,

mn∑

k=1

δYn, k

d−→ PRM(ν)

on X.

Since the proof of this proposition follows the same argument as given in the proof

of Theorem 5.3 in Resnick [60], it is here omitted.

Let X′ be a measurable subset of X and give X′ the relative topology inherited from

X. Define the restriction map T : Mp(X) → Mp(X′) by

Tm = m
∣∣
X′ . (1.15)

For a set B ⊆ X′ let ∂X′B denote the boundary of B in X′ and ∂XB the boundary of

Figure 1.3: The left figure represents an example of a point process m ∈ Mp(X) given
by its points (or atoms), while the right figure represents m restricted to the subset X ′.

B in X. The restriction map T then posses the following continuity property.

Proposition 1.28. (Feign et al. [31], Proposition 3.3, (a) and (b)) Let m ∈ Mp(X)

with m(∂XX′) = 0. Then the following statements hold.
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(a) The restriction map T : Mp(X) → Mp(X′) defined in (1.15) is continuous at m,

so if mn
v−→ m in Mp(X), then Tmn

v−→ Tm in Mp(X′).

(b) The same conclusion holds if we define T the same way but consider it as a

mapping T : Mp(X) → Mp(X).

At the end of this section we give a result which describes what it means for two

Radon point measures m1 and m2 to be close. They will be close if in any compact

subset of the state space, the finite number of points of m1 are close in location to the

finite number of points of m2.

Lemma 1.29. Suppose mn, n > 0, are point measures in Mp(X) and mn
v−→ m0. For

every compact set K ⊆ X, such that m0(∂K) = 0, we have for n > n(K) a labeling of

the points of mn and m0 in K such that

mn

∣∣
K

=
s∑

i=1

δ
x
(n)
i

, m0

∣∣
K

=
s∑

i=1

δ
x
(0)
i

,

and for every i = 1, . . . , s, we have in X,

x
(n)
i → x

(0)
i , as n →∞.

For a proof of this lemma we refer to Lemma 7.1 in Resnick [60] (see also Neveu

[53]).

1.5 Weak dependence

The limit theorems in the classical central limit theory were studied under the as-

sumption that the underlying random variables were independent. One of the ways to

generalize these theorems is to replace the independence by certain weak dependence

conditions. The dependence condition that we shall use will be relatively weak, and it

will be implied by the well known strong mixing condition.
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In the literature one can find many measures of dependence. Here we shall give

five of them which are the most used in applications. For a more detailed discussion

about measures of dependence and mixing conditions we refer to Bradley [16]. Suppose

(Ω,F , P) is a probability space. For any σ-field A ⊆ F , let L2(A) denote the space of

square-integrable, A-measurable, real-valued random variables. For any two σ-fields

A,B ⊆ F define the following set of coefficients which are used to measure dependence:

α(A,B) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B},

φ(A,B) = sup{|P(B |A)− P(B)| : A ∈ A, P(A) > 0, B ∈ B, },

ψ(A,B) = sup
{ |P(A ∩B)− P(A)P(B)|

P(A)P(B)
: A ∈ A, B ∈ B

}
,

ρ(A,B) = sup
{ |E(XY )− EXEY |√

EX2EY 2
: X ∈ L2(A), Y ∈ L2(B)

}
,

β(A,B) = sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|,

where the supremum in the last equation is taken over all pairs of (finite) partitions

{A1, . . . , AI} and {B1, . . . , BJ} of Ω such that Ai ∈ A for all i and Bj ∈ B for all j.

These coefficients satisfy the following inequalities:

2α(A,B) 6 β(A,B) 6 φ(A,B) 6 1

2
ψ(A,B);

4α(A,B) 6 ρ(A,B) 6 ψ(A,B);

ρ(A,B) 6 2
√

φ(A,B).

Now suppose (Xn)n∈Z is a sequence of random variables. For −∞ 6 k 6 l 6 ∞
define F l

k = σ({Xi : k 6 i 6 l}). Now we are ready to define the mixing conditions for

a sequence of random variables.

Definition 1.30. We say the sequence (Xn) is:



28 Chapter 1. Notions and tools

(i) α-mixing (or strongly mixing) if α(n) = sup
j∈Z

α(F j
−∞,F∞

j+n) → 0 as n →∞;

(ii) φ-mixing if φ(n) = sup
j∈Z

φ(F j
−∞,F∞

j+n) → 0 as n →∞;

(iii) ψ-mixing if ψ(n) = sup
j∈Z

ψ(F j
−∞,F∞

j+n) → 0 as n →∞;

(iv) ρ-mixing if ρ(n) = sup
j∈Z

ρ(F j
−∞,F∞

j+n) → 0 as n →∞;

(v) β-mixing (or absolutely regular) if β(n) = sup
j∈Z

β(F j
−∞,F∞

j+n) → 0 as n →∞.

Note that when the sequence (Xn) is strictly stationary, one has simply α(n) =

α(F0
−∞,F∞

n ), and the same holds for the other dependence coefficients φ(n), ψ(n),

ρ(n) and β(n).

Remark 1.31. By the inequalities above the following implications hold for a given

sequence of random variables:

(i) β-mixing ⇒ α-mixing;

(ii) ρ-mixing ⇒ α-mixing;

(iii) φ-mixing ⇒ β-mixing and ρ-mixing;

(iv) ψ-mixing ⇒ φ-mixing.

Aside from transitivity, there are no other implications between these mixing conditions

in the general case. However, for some special families of random sequences, e.g.

Gaussian sequences and discrete Markov chains, some additional implications hold

(see Theorem 3.1, Theorem 3.2 and Theorem 7.1 in Bradley [16]).

Example 1.32. Here, besides examples of random sequences that satisfy some (or all)

of these five mixing conditions, we give an example where all of these mixing conditions

fail to hold:



1.5 Weak dependence 29

(a) A sequence of independent or m-dependent random variables satisfies all of these

five mixing conditions.7

(b) Suppose (Zk)k∈Z is an i.i.d. sequence and the distribution of Z1 is absolutely

continuous with a density which is Gaussian, Cauchy, exponential or uniform

(on some interval). Then the random sequence (Xk)k∈Z defined by

Xk =
∞∑

j=0

2−jZk−j,

is well defined, strictly stationary and β-mixing (see Example 6.1 in Bradley

[15]).

(c) Suppose now (Zk)k∈Z is an i.i.d. sequence with P(Z1 = 0) = P(Z1 = 1) = 1/2.

Define

Xk =
∞∑

j=0

2−j+1Zk−j, k ∈ Z.

Then the sequence (Xn) is not α-mixing, since α(n) = 1/4 for all n ∈ N (see

Example 6.2 in Bradley [15]). Therefore, in view of Remark 1.31, the remaining

four mixing conditions also fail to hold.

Recall E = R \ {0}, and take a sequence of positive real numbers (an) such that

an →∞ as n →∞.

Definition 1.33. We say a strictly stationary sequence of random variables (Xn)

satisfies the mixing condition A′(an) if there exist a sequence of positive integers (rn)

such that rn →∞ and rn/n → 0 as n →∞, and such that for every f ∈ C+
K([0, 1]×E),

denoting kn = bn/rnc, as n →∞,

E exp
{
−

n∑
i=1

f
( i

n
,
Xi

an

)}
−

kn∏

k=1

E exp
{
−

rn∑
i=1

f
(krn

n
,
Xi

an

)}
→ 0. (1.16)

7The random variables {Xn : n ∈ Z} are m-dependent if the σ-fields Fk1
j1

, . . . ,Fkl
jl

are independent
if ki−1 + m < ji for all i = 2, . . . , l.
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The following result shows that a strictly stationary strongly mixing sequence of

regularly varying random variables satisfies the mixing condition A′(an).

Proposition 1.34. Suppose (Xn) is a strictly stationary sequence of regularly varying

random variables with index of regular variation α > 0, and (an) a sequence of positive

real numbers such that nP(|X1| > an) → 1 as n →∞. If (Xn) is strongly mixing then

the mixing condition A′(an) holds.

Proof. Let (ln) be an arbitrary sequence of positive integers such that ln → ∞ as

n → ∞ and ln = o(n1/8), where bn = o(cn) means bn/cn → 0 as n → ∞. Define, for

any n ∈ N,

rn = bmax{n√αln+1, n2/3}c+ 1.

Then rn →∞ as n →∞. Since the sequence (Xn) is α-mixing, αln+1 → 0 as n →∞,

and therefore rn/n → 0 as n → ∞. Put kn = bn/rnc. Then it follows that kn → ∞
and

knαln+1 → 0 and
knln
n

→ 0, (1.17)

as n →∞.

Fix f ∈ C+
K([0, 1]× E). We have to show that I(n) → 0 as n →∞, where

I(n) =
∣∣∣E exp

{
−

n∑
i=1

f
( i

n
,
Xi

an

)}
−

kn∏

k=1

E exp
{
−

rn∑
i=1

f
(krn

n
,
Xi

an

)}∣∣∣.
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We have

I(n) 6
∣∣∣E exp

{
−

n∑
i=1

f
( i

n
,
Xi

an

)}
− E exp

{
−

knrn∑
i=1

f
( i

n
,
Xi

an

)}∣∣∣

+
∣∣∣E exp

{
−

knrn∑
i=1

f
( i

n
,
Xi

an

)}
− E exp

{
−

kn∑

k=1

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}∣∣∣

+
∣∣∣E exp

{
−

kn∑

k=1

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}
−

kn∏

k=1

E exp
{
−

rn−ln∑
i=1

f
(krn

n
,
Xi

an

)}∣∣∣

+
∣∣∣

kn∏

k=1

E exp
{
−

rn−ln∑
i=1

f
(krn

n
,
Xi

an

)}
−

kn∏

k=1

E exp
{
−

rn∑
i=1

f
(krn

n
,
Xi

an

)}∣∣∣

=: I1(n) + I2(n) + I3(n) + I4(n) (1.18)

The function f is nonnegative, bounded (by M > 0 let us suppose) and its support

is bounded away from origin, which implies that f(s, x) = 0 for all s ∈ [0, 1] and |x| 6 δ

for some δ > 0. Put jn = n − knrn. Then by stationarity and using the inequality

1− e−x 6 x for any x > 0, we obtain

I1(n) 6 E
[
exp

{
−

knrn∑
i=1

f
( i

n
,
Xi

an

)}
·
∣∣∣1− exp

{
−

n∑

i=knrn+1

f
( i

n
,
Xi

an

)}∣∣∣
]

6 E
[ n∑

i=knrn+1

f
( i

n
,
Xi

an

)]
=

n∑

i=knrn+1

E
[
f
( i

n
,
X1

an

)
1{ |X1|

an
>δ

}]

6 MjnP(|X1| > δan). (1.19)

In a similar manner we obtain

I2(n) 6 MknlnP(|X1| > δan). (1.20)
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We have

I3(n) 6
∣∣∣E exp

{
−

kn∑

k=1

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}

−E exp
{
−

rn−ln∑
i=1

f
( i

n
,
Xi

an

)}
E exp

{
−

kn∑

k=2

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}∣∣∣

+
∣∣∣E exp

{
−

rn−ln∑
i=1

f
( i

n
,
Xi

an

)}
E exp

{
−

kn∑

k=2

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}

−E exp
{
−

rn−ln∑
i=1

f
(1 · rn

n
,
Xi

an

)}
E exp

{
−

kn∑

k=2

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}∣∣∣

+
∣∣∣E exp

{
−

rn−ln∑
i=1

f
(1 · rn

n
,
Xi

an

)}
E exp

{
−

kn∑

k=2

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}

−
kn∏

k=1

E exp
{
−

rn−ln∑
i=1

f
(krn

n
,
Xi

an

)}∣∣∣

=: I5(n) + I6(n) + I7(n).

The inequality

|E(gh)− Eg Eh| 6 4C1C2αm,

for a F j
−∞ measurable function g and a F∞

j+m measurable function h such that |g| 6 C1

and |h| 6 C2 (see for instance Lemma 1.2.1 in Lin and Lu [47]), gives

I5(n) 6 4αln+1. (1.21)

For any t > 0 there exists a constant C(t) > 0 such that the following inequality holds:

|1− e−x| 6 C(t)|x| for all |x| 6 t.
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This inequality and Lemma 4.3 in Durrett [29] then imply

I6(n) 6 E
∣∣∣ exp

{
−

rn−ln∑
i=1

f
( i

n
,
Xi

an

)}
− exp

{
−

rn−ln∑
i=1

f
(rn

n
,
Xi

an

)}∣∣∣

6
rn−ln∑
i=1

E
∣∣∣ exp

{
− f

( i

n
,
Xi

an

)}
− exp

{
− f

(rn

n
,
Xi

an

)}∣∣∣

6
rn−ln∑
i=1

E
∣∣∣1− exp

{
f
( i

n
,
Xi

an

)
− f

(rn

n
,
Xi

an

)}∣∣∣

6 C(2M)
rn−ln∑
i=1

E
∣∣∣f

( i

n
,
Xi

an

)
− f

(rn

n
,
Xi

an

)∣∣∣

= C(2M)
rn−ln∑
i=1

E
[∣∣∣f

( i

n
,
Xi

an

)
− f

(rn

n
,
Xi

an

)∣∣∣1{ |Xi|
an

>δ
}]

.

Since a continuous function on a compact set is uniformly continuous, it follows that

for any ε > 0 there exists γ > 0 such that for (s, x), (s′, x′) ∈ [0, 1]× {y ∈ E : |y| > δ},
if d[0,1]×E((s, x), (s′, x′)) < γ then |f(s, x) − f(s′, x′)| < ε, where d[0,1]×E denotes the

metric on the direct product of metric spaces [0, 1] and E, i.e.

d[0,1]×E((s, x), (s′, x′)) = max{|s− s′|, ρ(x, x′)},

where ρ is the metric on E defined in Section 1.1. Since rn/n → 0 as n →∞, for large

n we have

d[0,1]×E
(( i

n
,
Xi

an

)
,
(rn

n
,
Xi

an

))
=
|i− rn|

n
6 rn

n
< γ,

for any i = 1, . . . , rn − ln. Therefore, for large n,

∣∣∣f
( i

n
,
Xi

an

)
− f

(rn

n
,
Xi

an

)∣∣∣ < ε,

and this implies

I6(n) 6 ε C(2M)(rn − ln)P(|X1| > δan), for large n. (1.22)
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Taking into account relations (1.21) and (1.22), it follows that, for large n,

I3(n) 6 4αln+1 + ε C(2M)rnP(|X1| > δan) + I7(n),

and since it is easy to obtain

I7(n) 6
∣∣∣E exp

{
−

kn∑

k=2

krn−ln∑

i=(k−1)rn+1

f
( i

n
,
Xi

an

)}
−

kn∏

k=2

E exp
{
−

rn−ln∑
i=1

f
(krn

n
,
Xi

an

)}∣∣∣,

we recursively obtain (we repeat the same procedure for I7(n) as we did for I3(n) and

so on)

I3(n) 6 4knαln+1 + ε C(2M)knrnP(|X1| > δan). (1.23)

Stationarity and Lemma 4.3 in Durrett [29] imply

I4(n) 6 MknlnP(|X1| > δan). (1.24)

Thus from relations (1.18), (1.19), (1.20), (1.23) and (1.24) it follows that for large n,

I(n) 6
(
M

jn

n
+ 2M

knln
n

+ ε C(2M)
knrn

n

)
· nP(|X1| > an) · P(|X1| > δan)

P(|X1| > an)

+ 4knαln+1.

Since X1 is regularly varying with index α, by Proposition 1.8 it follows that

P(|X1| > δan)

P(|X1| > an)
→ δ−α,

as n →∞. This together with relation (1.17), and the fact that jn/n → 0, knrn/n → 1

and nP(|X1| > an) → 1 as n →∞, imply

lim sup
n→∞

I(n) 6 ε C(2M)δ−α.

But since this holds for all ε > 0, we get limn→∞ I(n) = 0, and thus condition A′(an)

holds.
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1.6 Convergence of point processes under weak de-

pendence

An important ingredient in the proof of our main functional limit theorem in the

next chapter will be the convergence in distribution of a sequence of time-space point

processes defined by

Nn =
n∑

i=1

δ(i/n,Xi/an) for all n ∈ N,

where (Xn) is a strictly stationary regularly varying sequence of random variables, and

(an) is a sequence of positive real numbers such that nP(|X1| > an) → 1 as n →∞.

Firstly we state the conditions needed for such a convergence. Suppose that the

mixing condition A′(an) (see Definition 1.33) holds. To control the dependence of high

level exceedances, we introduce the following anti-clustering condition.

Definition 1.35. We say a strictly stationary sequence of random variables (Xn)n∈Z

satisfies the anti-clustering condition AC(an) if there exists a sequence of positive

integers (rn) such that rn → ∞ and rn/n → 0 as n → ∞, and such that for every

u > 0,

lim
m→∞

lim sup
n→∞

P
(

max
m6|i|6rn

|Xi| > uan

∣∣∣ |X0| > uan

)
= 0. (1.25)

This condition assures that clusters of large values of |Xn| do not last for too long.

It was used by Davis and Hsing in [24] in proving that, under the so-called mixing

condition A(an) (which we can regard as a version of our condition A′(an) without the

time coordinate), the sequence of point processes

N∗
n =

n∑
i=1

δXi/an

converges in distribution (for details see Theorem 2.7 in [24]).

Put Mn = max{|Xi| : i = 1, . . . , n}, n ∈ N. In Proposition 4.2 in Basrak and Segers

[10], it has been shown that under the anti-clustering condition AC(an) the following
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value

θ = lim
r→∞

lim
x→∞

P
(
Mr 6 x

∣∣ |X0| > x
)

= P
(

sup
i>1

|Yi| 6 1
)

= P
(

sup
i6−1

|Yi| 6 1
)

(1.26)

is strictly positive, where (Yi) is the tail process of (Xn). Moreover it also holds that

P
(
lim|n|→∞ |Yn| = 0

)
= 1, and that for every u ∈ (0,∞)

θ = lim
n→∞

P(Mrn ≤ uan | |X0| > uan) = lim
n→∞

P(Mrn > uan)

rnP(|X0| > uan)
. (1.27)

The probability that Mrn exceeds uan tends to zero as n → ∞.8 Theorem 4.3 in [10]

yields the following weak convergence of a sequence of point processes in the state

space E: (
rn∑
i=1

δ(anu)−1Xi

∣∣∣∣∣Mrn > anu

)
d−→

(∑

n∈Z
δYn

∣∣∣∣∣ sup
i6−1

|Yi| 6 1

)
. (1.28)

Note that as |Yn| → 0 almost surely as |n| → ∞, the point process
∑

n δYn is well-

defined in E. By (1.26), the probability of the conditioning event on the right-hand

side of (1.28) is nonzero. Now we are ready to describe the convergence in distribution

of the sequence of point processes (Nn) and to describe the limit. For u ∈ (0,∞) let

Eu = E \ [−u, u].

Theorem 1.36. Suppose (Xn) is a strictly stationary regularly varying random process

with index α > 0. Assume that it satisfies the mixing conditions A′(an) and the anti-

clustering condition AC(an), where (an) is a sequence of positive real numbers such

that nP(|X1| > an) → 1 as n →∞. Then for every u ∈ (0,∞) and as n →∞,

Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

, (1.29)

on [0, 1]× Eu, where N (u) =
∑

i

∑
j δ

(T
(u)
i ,uZij)

and

8Notice that P(Mrn > uan) 6 rnP(|X1| > uan) = (rn/n) · nP(|X1| > uan) → 0 as n →∞.
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1.
∑

i δT
(u)
i

is a homogeneous Poisson process on [0, 1] with intensity θu−α;

2. (
∑

j δZij
)i is an i.i.d. sequence of point processes in E, independent of

∑
i δT

(u)
i

,

and with common distribution equal to the weak limit in (1.28).

Proof. Let (Xk,j)j∈N, with k ∈ N, be independent copies of (Xj)j∈N, and define

N̂n =
kn∑

k=1

N̂n,k with N̂n,k =
rn∑

j=1

δ(krn/n,Xk,j/an).

By the mixing condition A′(an) and Theorem 1.23, the weak limits of Nn and N̂n, as

n →∞, must coincide. Take f ∈ C+
K([0, 1]× Eu). Define

f̃(t, x) = f(t, x)1[0,1]×Eu(t, x), (t, x) ∈ [0, 1]× E.

Then f̃ ∈ C+
K([0, 1]×E). Since Nn(f̃) =

(
Nn

∣∣
[0,1]×Eu

)
(f) and N̂n(f̃) =

(
N̂n

∣∣
[0,1]×Eu

)
(f),

from limn→∞ ΨNn(f̃) = limn→∞ ΨN̂n
(f̃) we get

lim
n→∞

Ψ
Nn

∣∣
[0,1]×Eu

(f) = lim
n→∞

Ψ
N̂n

∣∣
[0,1]×Eu

(f).

Hence, the weak limits of Nn

∣∣
[0,1]×Eu

and N̂n

∣∣
[0,1]×Eu

, as n →∞, also coincide. Therefore

to prove (1.29) it is enough to show that the Laplace functional of N̂n

∣∣
[0,1]×Eu

converges

to the Laplace functional of N (u)
∣∣
[0,1]×Eu

as n →∞.

Let f ∈ C+
K([0, 1]× Eu) be arbitrary. Since the function f̃ is bounded, there exists

M ∈ (0,∞) such that 0 6 f̃(t, x) 6 M 1[−u,u]c(x). Using the inequality 1 − e−x 6 x

for x > 0, we obtain that

1 > Ee−N̂n,k( ef) > Ee−M
Prn

i=1 1{|Xi|>uan} > 1−MrnP(|X0| > uan).

In combination with the elementary bound 0 6 − log z − (1 − z) 6 (1 − z)2/z for

z ∈ (0, 1], it follows that

− log Ee−N̂n( ef) −
kn∑

k=1

(1− Ee−N̂n,k( ef))
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= −
kn∑

k=1

log Ee−N̂n,k( ef) −
kn∑

k=1

(1− Ee−N̂n,k( ef))

6 kn
[MrnP(|X0| > uan)]2

1−MrnP(|X0| > uan)
=

M2

kn

(knrn

n

)2 [nP(|X0| > uan)]2

1−MrnP(|X0| > uan)

→ 0 as n →∞, (1.30)

since kn → ∞, knrn/n → 1, nP(|X0| > uan) → u−α and rnP(|X0| > uan) → 0 as

n →∞. Let Tn be a random variable, uniformly distributed on {krn/n : k = 1, . . . , kn}
and independent of (Xj)j∈Z. Then

kn∑

k=1

(1− Ee−N̂n,k( ef))

= knP(Mrn > anu)
1

kn

kn∑

k=1

E
[
1− e−

Prn
j=1

ef(krn/n,Xj/an)
∣∣∣ Mrn > anu

]

= knP(Mrn > anu)
1

kn

kn∑

k=1

E
[
1− e−

Prn
j=1

ef(krn/n,Xj/an)
∣∣∣ Mrn > anu

]

= knP(Mrn > anu) E
[
1− e−

Prn
j=1

ef(Tn,uXj/(uan))
∣∣∣Mrn > anu

]
(1.31)

Clearly Tn converge in law to a uniformly distributed random variable T on (0, 1). By

(1.28) and independence of sequences (Tn) and (Xn)
(

Tn,

rn∑
i=1

δ(anu)−1Xi

∣∣∣∣∣Mrn > anu

)
d−→

(
T,

∑

n∈Z
δZn

)
.

where
∑

n δZn is a point processes on E, independent of the random variable T , and with

distribution equal to the weak limit in (1.28). By relation (1.27), for every u ∈ (0,∞)

it holds that knP(Mrn > uan) → θu−α as n →∞. Thus, from relation (1.31) we have

that

lim
n→∞

kn∑

k=1

(1− Ee−N̂n,k( ef)) = θu−αE
[
1− e−

P
j
ef(T,uZj)

]

=

∫ 1

0

E
[
1− e−

P
j
ef(t,uZj)

]
θu−α dt. (1.32)
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Relations (1.30) and (1.32) then yield, as n →∞,

ΨN̂n
(f̃) = Ee−N̂n( ef) → exp

{
−

∫ 1

0

E[1− e−
P

j
ef(t,uZj)]θu−α dt

}
. (1.33)

Define now g(t) = E exp{−∑
j f̃(t, uZj)} for t ∈ [0, 1]. Since

∑
i δT

(u)
i

is indepen-

dent of the i.i.d. sequence (
∑

j δZij
)i,

Ee−N(u)( ef) = Ee−
P

i

P
j
ef(T

(u)
i ,uZij) = E

(∏
i

E

(
e−

P
j
ef(T

(u)
i ,uZij)

∣∣∣∣∣ (T
(u)
k )k

))

= Ee
P

i log g(T
(u)
i ).

The right-hand side is the Laplace functional of a homogeneous Poisson process on

[0, 1] with intensity θu−α evaluated in the function − log g. Therefore, it is equal to

exp
{
−

∫ 1

0

[1− g(t)]θu−α dt
}

(see Example 1.24 (3)). By the definition of g, the integral in the exponent is equal to

the one in (1.33). Therefore

ΨN̂n
(f̃) → ΨN(u)(f̃) as n →∞,

and this immediately gives

Ψ
N̂n

∣∣
[0,1]×Eu

(f) → Ψ
N(u)

∣∣
[0,1]×Eu

(f) as n →∞.

This completes the proof of the theorem.

Corollary 1.37. Assume the setup from Theorem 1.36. Then for every u ∈ (0,∞),

as n →∞,

Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

(1.34)

on [0, 1]× Eu, where Eu = [−∞,−u] ∪ [u,∞].
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Proof. Let 0 < v < u. From Theorem 1.36 we have that, as n →∞,

Nn

∣∣
[0,1]×Ev

d−→ N (v)
∣∣
[0,1]×Ev

(1.35)

on [0, 1] × Ev. Define the restriction map T : Mp([0, 1] × Ev) → Mp([0, 1] × Eu) by

Tm = m
∣∣
[0,1]×Eu

. Let

Λ̃ = {m ∈ Mp([0, 1]× Ev) : m([0, 1]× {±u}) = 0}.

By the properties of the tail process, it follows that P
( ∑

j δvYj
({±u}) = 0

)
= 1 and

therefore, P
( ∑

j δvZij
({±u}) = 0

)
= 1 as well. This implies

P(N (v)
∣∣
[0,1]×Ev

∈ Λ̃) = 1.

Since ∂[0,1]×Ev [0, 1]×Eu = [0, 1]×{±u}, for every m ∈ Λ̃ it holds that m(∂[0,1]×Ev [0, 1]×
Eu) = 0. Hence, by Proposition 1.28 the restriction map T is continuous on the set Λ̃.

Let DT denote the set of discontinuity points of T . Then

P(N (v)
∣∣
[0,1]×Ev

∈ DT ) 6 P(N (v)
∣∣
[0,1]×Ev

/∈ Λ̃) = 0.

The continuous mapping theorem (see Theorem 3.1 in Resnick [60]) applied to (1.35)

yields

T (Nn

∣∣
[0,1]×Ev

)
d−→ T (N (v)

∣∣
[0,1]×Ev

),

i.e.

Nn

∣∣
[0,1]×Eu

d−→ N (v)
∣∣
[0,1]×Eu

as n →∞, (1.36)

on [0, 1] × Eu. In a similar manner as above we could show that Nn

∣∣
[0,1]×Eu

d−→
N (v)

∣∣
[0,1]×Eu

. Recall from Theorem 1.36 that Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

. Therefore

N (v)
∣∣
[0,1]×Eu

d
= N (u)

∣∣
[0,1]×Eu

.
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This together with the fact that P(N (s)([0, 1] × {±u}) = 0) = 1 for s = u, v, suffices

to conclude that

N (v)
∣∣
[0,1]×Eu

d
= N (u)

∣∣
[0,1]×Eu

.

Now we can rewrite (1.36) as

Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

.

Corollary 1.38. With the assumptions as in Corollary 1.37 it holds that, as n →∞,

Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

on [0, 1]× Eu.

Note that the only difference with Theorem 1.36 is that here we have the con-

vergence on the state space [0, 1] × Eu, while the convergence in Theorem 1.36 is on

[0, 1]× Eu.

Proof of Corollary 1.38. Define T1 : Mp([0, 1]×Eu) → Mp([0, 1]×Eu) by T1m = m
∣∣
[0,1]×Eu

.

Let

Λ̃1 = {m ∈ Mp([0, 1]× Eu) : m([0, 1]× {±u}) = 0}.

Then in a similar way as in the proof of Corollary 1.37 we obtain that

P(N (u)
∣∣
[0,1]×Eu

∈ Λ̃1) = 1,

and that the functional T1 is continuous on the set Λ̃1. Therefore from relation (1.34)

and the continuous mapping theorem it follows that, as n →∞,

T1(Nn

∣∣
[0,1]×Eu

)
d−→ T1(N

(u)
∣∣
[0,1]×Eu

),
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i.e.

Nn

∣∣
[0,1]×Eu

d−→ N (u)
∣∣
[0,1]×Eu

on [0, 1]× Eu.

1.7 Lévy processes

The limit processes in functional limit theorems which will be studied in the forth-

coming chapters will belong to a special class of Lévy processes. In this section we

introduce a framework of the theory of Lévy processes needed to describe these limit

processes.

It will be very useful to connect Lévy processes with infinitely divisible distributions

and their Lévy-Khintchine representations. For a textbook treatment of Lévy processes

we refer to Bertoin [11], Kyprianou [44], Samorodnitsky and Taqqu [62] and Sato [63].

The probability measure µ on R is infinitely divisible if for every n ∈ N there is a

probability measure µn such that µ = µn∗
n , where µn∗

n denotes the n-fold convolution

of µn.9

A random variable X is said to has an infinitely divisible distribution if its proba-

bility distribution PX is infinitely divisible.10 Equivalently X has an infinitely divis-

ible distribution if for every n ∈ N there exists a sequence of i.i.d. random variables

X1,n, . . . , Xn,n such that

X
d
= X1,n + . . . + Xn,n,

where
d
= denotes equality in distribution.

The following theorem gives a representation of characteristic functions of infinitely

divisible distributions, and it is called the Lévy-Khintchine representation. Let µ̂ denote

9The convolution ν1∗ν2 of two distributions ν1 and ν2 on R is a distribution defined by (ν1∗ν2)(B) =∫∫
R×R 1B(x + y)ν1(dx)ν2(dy), B ∈ B(R2).
10The probability distribution (or probability law) of a random variable X is the probability measure

PX defined by PX(B) = P(X ∈ B), B ∈ B(R).
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the characteristic function of a probability measure µ, i.e.

µ̂(z) =

∫

R
eizxµ(dx), z ∈ R.

Then restating the statement of Theorem 8.1 in Sato [63] in the 1-dimensional case we

obtain the following theorem.

Theorem 1.39. (i) If µ is an infinitely divisible distribution on R, then

µ̂(z) = exp
[
− 1

2
az2 + ibz +

∫

R
(eizx − 1− izx1{|x|61})ν(dx)

]
, z ∈ R, (1.37)

where a > 0, b ∈ R and ν is a measure on R satisfying

ν({0}) = 0 and

∫

R
(|x|2 ∧ 1)ν(dx) < ∞. (1.38)

(ii) The representation of µ̂(z) in (i) by a, b and ν is unique.

(iii) Conversely, if a > 0, b ∈ R and ν is a measure satisfying (1.38), then there

exists an infinitely divisible distribution µ whose characteristic function is given

by (1.37).

The triple (a, ν, b) in Theorem 1.39 is called the characteristic triple of µ, and the

measure ν is called the Lévy measure of µ. Now we turn to the definition of Lévy

processes.

Definition 1.40. A stochastic process X = {Xt : t > 0} defined on a probability space

(Ω,F , P) is a Lévy process if it possesses the following properties.

(1) For 0 6 s 6 t, Xt −Xs is independent of {Xu : u 6 s}.

(2) For 0 6 s 6 t, Xt −Xs is equal in distribution to Xt−s.

(3) P(X0 = 0) = 1.
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(4) The paths of X are almost surely right continuous with left limits.

Remark 1.41. If X = {Xt : t > 0} is a Lévy process, then it is not hard to see that

for every t > 0 the random variable Xt has an infinitely divisible distribution. Indeed

write Xt in the form

Xt = Xt/n + (X2t/n −Xt/n) + . . . + (Xt −X(n−1)t/n),

for an arbitrary n ∈ N. On the right hand side, by properties (1) and (2) in Definition

1.40, we have the sum of n i.i.d. random variables, which shows that Xt has an infinitely

divisible distribution.

In particular, if X = {Xt : t > 0} is a Lévy process, then the random variable X1

has an infinitely divisible distribution, i.e. PX1 is infinitely divisible. Conversely, if µ

is an infinitely divisible probability measure on R, then there exists a Lévy process

X = {Xt : t > 0} such that µ = PX1 (see for instance Theorem 13.12 in Kallenberg

[40]). Hence the following result holds.

Theorem 1.42. For a probability measure µ on R, these conditions are equivalent:

(i) µ is infinitely divisible;

(ii) µ = PX1 for some Lévy process X = {Xt : t > 0}.

Under these conditions, the distribution of X is determined by µ.

Remark 1.43. For a Lévy process X = {Xt : t > 0} let

ϕXt(z) = E[eizXt ], z ∈ R,

denote the characteristic function of the random variable Xt. Then using the properties

of Lévy processes it follows that

ϕXt(z) = [ϕX1(z)]t,
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for any t > 0 (see Kyprianou [44, p. 4]).

Having in mind the relation between infinitely divisible distributions and Lévy

processes expressed in Theorem 1.42, for a characteristic triple (a, ν, b) of a probability

distribution PX1 we say it is also the characteristic triple of a Lévy process X = {Xt :

t > 0}.
Next we turn our attention to a special class of Lévy processes, i.e. the stable Lévy

processes. Firstly, for a random variable Y we say it has a stable distribution if for

every n ∈ N there exist an > 0 and bn ∈ R such that

Y1 + . . . + Yn
d
= anY + bn, (1.39)

where Y1, . . . , Yn are independent copies of Y . Relation (1.39) can be rewritten in the

form
(
Y1 − bn

n

)
+ . . . +

(
Yn − bn

n

)
d
= anY.

Therefore, anY is infinitely divisible. From this we immediately obtain that Y is also

infinitely divisible. Thus every stable random variable is infinitely divisible. It turns

out that in (1.39) we necessarily have an = n1/α for α ∈ (0, 2] (see Theorem 1 in Feller

[32, p. 166]). The number α is called the index of stability (or characteristic exponent).

A stable random variable with index of stability α is called α-stable.

Since stable random variables are infinitely divisible, their characteristic functions

have the form given in (1.37). The following result gives the characterization of stable

distributions in terms of theirs characteristic triples (for a proof see Sato [63], Theorem

14.3 (ii)).

Theorem 1.44. Let Y be a non-degenerate infinitely divisible random variable with

characteristic triple (a, ν, b). Let 0 < α < 2. Then Y is α-stable if and only if a = 0
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and

ν(uB) = u−αν(B) for all u > 0, B ∈ B(R).

Sometimes is convenient to rewrite the characteristic function of a stable random

variable in the form given in the next result (see for instance Sato [63], Theorem 14.15).

Theorem 1.45. Let α ∈ (0, 2]. If Y is a non-degenerate α-stable random variable,

then its characteristic function ϕY is of the form

ϕY (z) = exp
[
− c|z|α

(
1− iβ(sign z) tan

πα

2

)
+ iτz

]
for α 6= 1, (1.40)

ϕY (z) = exp
[
− c|z|

(
1 + iβ

2

π
(sign z) log |z|

)
+ iτz

]
for α = 1, (1.41)

with c > 0, β ∈ [−1, 1] and τ ∈ R. Here c, β and τ are uniquely determined by Y .11

Conversely, for every c > 0, β ∈ [−1, 1] and τ ∈ R, there is a non-degenerate α-stable

random variable Y satisfying (1.40) or (1.41).

Example 1.46. When α = 2, the characteristic function in (1.40) becomes ϕY (z) =

exp{−cz2 + iτz}. This is the characteristic function of a Gaussian random variable

with mean τ and variance 2c.

Remark 1.47. The representations of the characteristic function of a stable distri-

bution in the Lévy-Khintchine representation (1.37) and relations (1.40) and (1.41)

are connected in the following way. From Theorem 1.45 we know that the charac-

teristic function of a non-degenerate stable random variable is characterized by four

parameters

α ∈ [0, 2], c > 0, β ∈ [−1, 1], τ ∈ R.

The characteristic triple (a, ν, b) of an α-stable random variable for α ∈ (0, 2) is then

given by

a = 0, ν(dx) =
(
c11(0,∞)(x) + c21(−∞,0)(x)

) |x|−1−αdx and b = τ − d,

11β is irrelevant when α = 2, and in this case we take β = 0.
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where

(1) α ∈ (0, 1): c1 = −c(1+β)
2Γ(−α) cos πα

2
, c2 = −c(1−β)

2Γ(−α) cos πα
2

, d = − ∫
|x|61

x ν(dx);

(2) α = 1: c1 = c(1+β)
π

, c2 = c(1−β)
π

, d = (c1 − c2)
( ∫∞

1
sin r
r2 dr +

∫ 1

0
sin r−r

r2 dr
)
;

(3) α ∈ (1, 2): c1 = −c(1+β)
2Γ(−α) cos πα

2
, c2 = −c(1−β)

2Γ(−α) cos πα
2

, d =
∫
|x|>1

x ν(dx)

(see Lemma 2 in Feller [32, p. 541] and the computations in Sato [63, p. 84, 85]). The

characteristic triple of a 2-stable random variable is of the form (2c, 0, τ).

Definition 1.48. A Lévy process X = {Xt : t > 0} is called α-stable if the random

variable X1 is α-stable.

Remark 1.49. If in relation (1.39) we have bn = 0, then the random variable Y is

said to have a strictly stable distribution. The characteristic function of a strictly α-

stable random variable with α 6= 1, is given by relation (1.40) with τ = 0, while the

characteristic function of a strictly 1-stable random variable is given by relation (1.41)

with β = 0 (see Property 1.2.6 and Property 1.2.8 in Samorodnitsky and Taqqu [62]).





Chapter 2

Functional limit theorem with M1
convergence

In this chapter we prove the main result of this thesis, namely the functional limit

theorem for regularly varying random processes under weak dependence, the anti-

clustering condition AC(an), a condition on the tail process and an additional technical

condition for the case when α ∈ [1, 2), where α is the index of regular variation of

the random process. The convergence in this theorem will be given with respect to

Skorohod’s M1 topology.

2.1 Space D[0, 1] and Skorohod’s J1 and M1 metrics

Since the stochastic process that we are going to study have discontinuities, for the

underlying function space of sample paths of the stochastic processes we choose the

space D[0, 1] of all right-continuous real valued functions with left limits defined on

[0, 1]. The space D[0, 1] is also known as the space of càdlàg functions.1 The space

C[0, 1] of all continuous real valued functions on [0, 1] is clearly a subset of D[0, 1]. The

well known and mostly used metric on C[0, 1] is the uniform metric defined by

d(x, y) = ‖x− y‖[0,1] = sup
t∈[0,1]

|x(t)− y(t)|, x, y ∈ C[0, 1].

1Càdlàg is an acronym for the French continue à droite, limites à gauche.

49
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While this metric works well on C[0, 1], it causes problems on D[0, 1].

Example 2.1. Define

xn(t) = 1[0, 1
2
+ 1

n
)(t), x(t) = 1[0, 1

2
)(t),

for n > 3 and t ∈ [0, 1]. Then for every n > 3,

Figure 2.1: Plots of the functions xn and x.

d(xn, x) >
∣∣∣xn

(1

2
+

1

2n

)
− x

(1

2
+

1

2n

)∣∣∣ = 1,

which implies that the sequence (xn) does not converge to x in the uniform metric.

We want to have a metric in which (xn) converges to x.

The uniform metric allows uniformly small perturbations of the space coordinate,

but not of the time coordinate. So we need a new metric which allows also small

perturbations of the time scale. The metric we are looking for was introduced by

Skorohod [64] and is defined in the following way. Let ∆ be the set of strictly increasing

continuous functions λ : [0, 1] → [0, 1] such that λ(0) = 0 and λ(1) = 1, and let e ∈ ∆

be the identity map on [0, 1], i.e. e(t) = t for all t ∈ [0, 1]. For x, y ∈ D[0, 1] define

dJ1(x, y) = inf{‖x ◦ λ− y‖[0,1] ∨ ‖λ− e‖[0,1] : λ ∈ ∆},
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where s ∨ t denotes max{s, t}. Then dJ1 is a metric on D[0, 1] (see Billingsley [12, p.

111]) and is called the (Skorohod) J1 metric. Some simple properties of the metric dJ1

are collected in the following proposition (for a proof see Resnick [60, p. 47]).

Proposition 2.2. The following statements hold.

1. For a sequence of functions (xn)n>0 in D[0, 1] it holds that dJ1(xn, x0) → 0 if and

only if there exists a sequence of functions (λn) in ∆ such that, as n →∞,

‖λn − e‖[0,1] → 0 and ‖xn ◦ λn − x0‖[0,1] → 0.

2. dJ1(x, y) 6 ‖x− y‖[0,1] for all x, y ∈ D[0, 1].

3. If dJ1(xn, x0) → 0 as n → ∞, for xn ∈ D[0, 1], n > 0, then for every continuity

point t ∈ [0, 1] of x0 it holds that xn(t) → x0(t) as n →∞.

4. If dJ1(xn, x0) →∞ as n →∞ and x0 ∈ C[0, 1], then ‖xn − x0‖[0,1] → 0.

The space D[0, 1] endowed with the J1 metric is a separable metric space, but it is

not complete since the sequence (xn) defined by

xn(t) = 1[ 1
2
, 1
2
+ 1

n
)(t)

is a Cauchy sequence in the metric dJ1 , but it is not convergent. For details we refer to

Billingsley [12], where is also given a metric, topologically equivalent to dJ1 (i.e. gives

the same topology as dJ1), under which D[0, 1] is complete.

Example 2.3. Recall the functions defined in Example 2.1. For every n > 3 put

λn(t) =

{
2
(

1
2

+ 1
n

)
t, t ∈ [0, 1

2
),

(
1− 2

n

)
t + 2

n
, t ∈ [1

2
, 1].

Then λn ∈ ∆, and since ‖λn − e‖[0,1] = n−1 and ‖xn ◦ λn − x‖[0,1] = 0, by the first

statement in Proposition 2.2 it follows that dJ1(xn, x) → 0 as n → ∞. Therefore the

sequence (xn) converges to x in the J1 metric.
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Figure 2.2: Plots of the functions λn and e.

The J1 metric will be useful in the next chapter when we shall study the i.i.d.

case and the isolated extremes case. Roughly speaking, in these cases any jump in the

limiting process will be approached by one jump in the converging sequence. But when

the limiting jump is approached in more then one jump in the converging sequence,

then the J1 metric does not work well, and we have to find a more suitable metric.

For x ∈ D[0, 1] the completed graph of x is the set

Γx = {(t, z) ∈ [0, 1]× R : z = λx(t−) + (1− λ)x(t) for some λ ∈ [0, 1]},

where x(t−) is the left limit of x at t. Besides the points of the graph {(t, x(t)) :

t ∈ [0, 1]}, the completed graph of x also contains the vertical line segments joining

(t, x(t)) and (t, x(t−)) for all discontinuity points t of x. We define an order on the

graph Γx by saying that (t1, z1) 6 (t2, z2) if either (i) t1 < t2 or (ii) t1 = t2 and

|x(t1−) − z1| 6 |x(t2−) − z2|. A parametric representation of the completed graph

Γx is a continuous nondecreasing function (r, u) mapping [0, 1] onto Γx, with r being

the time component and u being the spatial component. Let Π(x) denote the set of

parametric representations of the graph Γx. For x1, x2 ∈ D[0, 1] define

dM1(x1, x2) = inf{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri, ui) ∈ Π(xi), i = 1, 2}.
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Figure 2.3: A function in D[0, 1] and its completed graph.

Then dM1 is a metric on D[0, 1] (see Theorem 12.3.1 in Whitt [69]) and is called the

(Skorohod) M1 metric.

The J1 and M1 metrics are related by the following inequality

dM1(x, y) 6 dJ1(x, y), x, y ∈ D[0, 1] (2.1)

(see for instance Theorem 6.3.2 in Whitt [68]). The main properties of the M1 metric

which we shall use later on are given in the following two results (for a proof see

Corollary 12.5.1 and Corollary 12.7.1 in Whitt [69]).

Proposition 2.4. If xn ∈ D[0, 1] is a monotone function for each n ∈ N, then

dM1(xn, x) → 0 for x ∈ D[0, 1] if and only if xn(t) → x(t) for all t in a dense subset of

[0, 1] including 0 and 1.

Let Dx denote the set of discontinuities of x ∈ D[0, 1], i.e.

Dx = {t ∈ (0, 1] : x(t−) 6= x(t)}.

Proposition 2.5. Let x, y, xn, yn ∈ D[0, 1], n ∈ N. If dM1(xn, x) → 0 and dM1(yn, y) →
0 as n →∞, and

Dx ∩Dy = ∅,
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then dM1(xn + yn, x + y) → 0 as n →∞.

Example 2.6. Define

yn(t) =
1

2
1[ 1

2
− 1

n
, 1
2
)(t) + 1[ 1

2
,1](t), y(t) = 1[ 1

2
,1](t),

for n > 3 and t ∈ [0, 1]. Then little calculations yield dJ1(yn, y) > 1/2 for every n > 3,

showing that the sequence (yn) does not converge to y in the J1 metric. But things

change if we use the M1 metric. For the following parametric representations (r, u) of

Figure 2.4: Plots of the functions yn and y.

Γy and (rn, un) of Γyn , defined by

r(s) =
5s

2
1[0, 1

5
](s) +

1

2
1( 1

5
, 4
5
](s) +

5s− 3

2
1( 4

5
,1](s),

rn(s) = 5s
(1

2
− 1

n

)
1[0, 1

5
](s) +

(1

2
− 1

n

)
1( 1

5
, 2
5
](s) +

(5s− 3

n
+

1

2

)
1( 2

5
, 3
5
](s)

+
1

2
1( 3

5
, 4
5
](s) +

5s− 3

2
1( 4

5
,1](s),

u(s) = un(s) =
5s− 1

2
1( 1

5
, 2
5
](s) +

1

2
1( 2

5
, 3
5
](s) +

5s− 2

2
1( 3

5
, 4
5
](s) + 1( 4

5
, 1](s),
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we have ‖rn− r‖[0,1] = n−1 and ‖un− u‖[0,1] = 0. Therefore dM1(yn, y) → 0 as n →∞.

Figure 2.5: Plots of parametric representations (r, u) of Γy and (rn, un) of Γyn.

Remark 2.7. The M1 topology (induced by Skorohod’s M1 metric) was introduced

in Skorohod [64], along with J1, J2 and M2 topologies. Topology J1 is the most used

Skorohod’s topology. But in this thesis the M1 topology will be used in most of

considerations. It is straightforward to see that all these topologies are weaker then

the uniform topology, but stronger then the Lp topologies on D[0, 1] induced by the

norms

‖x‖p =
( ∫ 1

0

|x(t)|p dt
)1/p

,

for p > 1. The last statement follows from the fact that convergence in all four of

Skorohod’s topologies implies pointwise convergence on the set of all continuity points
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of the limiting function, and since this set contains all except at most countably many

points from [0, 1], we obtain convergence in Lp topology.

For a more detailed treatment of the space D[0, 1] and Skorohod’s topologies we

refer to Whitt [69].

2.2 Summation functional

Fix an arbitrary u > 0. The proof of our main theorem depends on the continuity

properties of the summation functional

ψ(u) : Mp([0, 1]× Eu) → D[0, 1]

defined by

ψ(u)
( ∑

i

δ(ti, xi)

)
(t) =

∑
ti≤t

xi 1{u<|xi|<∞}, t ∈ [0, 1].

Observe that ψ(u) is well defined because [0, 1] × Eu is a compact set. In the sequel

the space Mp([0, 1]× Eu) is equipped with the vague topology and D[0, 1] is equipped

with the M1 topology.

The summation functional ψ(u) is not continuous on the set [0, 1]×Eu (see Example

2.9 below), but we will show that it is continuous on the set Λ = Λ1 ∩ Λ2, where

Λ1 = {η ∈ Mp([0, 1]× Eu) : η({0, 1} × Eu) = η([0, 1]× {±∞,±u}) = 0},

Λ2 = {η ∈ Mp([0, 1]×Eu) : η({t}×[u,∞]) · η({t}×[−∞,−u]) = 0 for all t ∈ [0, 1]}.

Observe that the elements of Λ2 have the property that atoms with the same time

coordinate are all on the same side of the space axis.

Lemma 2.8. The summation functional ψ(u) : Mp([0, 1]×Eu) → D[0, 1] is continuous

on the set Λ, when D[0, 1] is endowed with Skorohod’s M1 topology.
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Figure 2.6: An example of a point process belonging to the set Λ.

Proof. Take an arbitrary η ∈ Λ and suppose that ηn
v−→ η in Mp([0, 1] × Eu) as n →

∞. We will show that ψ(u)(ηn) → ψ(u)(η) in D[0, 1] according to the M1 topology.

By Proposition 2.4, M1 convergence for monotone functions amounts to pointwise

convergence in a dense subset of points plus convergence at the endpoints. Our proof

is based on an extension of this criterion to piecewise monotone functions. This cut-

and-paste approach is justified in view of Lemma 12.9.2 in Whitt [69], provided that

the limit function is continuous at the cutting points.

Since the set [0, 1] × Eu is compact, there exists a nonnegative integer k = k(η)

such that

η([0, 1]× Eu) = k < ∞.

By assumptions, η does not have any atoms on the border of the set [0, 1]× Eu. As a

consequence ofLemma 1.29 there exists a positive integer n0 such that for all n > n0

it holds that

ηn([0, 1]× Eu) = k.

If k = 0, there is nothing to prove, so assume k > 1 and let (ti, xi) for i = 1, . . . , k,

be the atoms of η in [0, 1]× Eu. By the same lemma, the k atoms (t
(n)
i , x

(n)
i ) of ηn in
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[0, 1]×Eu (for n > n0) can be labeled in such a way that for every i = 1, . . . , k we have

(t
(n)
i , x

(n)
i ) → (ti, xi), as n →∞.

In particular, for any δ > 0 we can find a positive integer nδ such that for all n > nδ,

ηn([0, 1]× Eu) = k,

|t(n)
i − ti| < δ and |x(n)

i − xi| < δ, for i = 1, . . . , k. (2.2)

Let the sequence

0 < τ1 < τ2 < . . . < τp < 1

be such that the sets {τ1, . . . , τp} and {t1, . . . , tk} coincide. Since η can have several

atoms with the same time coordinate, it always holds that p 6 k. Put τ0 = 0, τp+1 = 1

and take

0 < r <
1

2
min
06i6p

|τi+1 − τi|.

For any t ∈ [0, 1] \ {τ1, . . . , τp} we can find δ ∈ (0, u) such that

δ < r and δ < min
16i6p

|t− τi|.

Then relation (2.2), for n > nδ, implies that t
(n)
i 6 t is equivalent to ti 6 t, and we

obtain

|ψ(u)(ηn)(t)− ψ(u)(η)(t)| =
∣∣∣∣

∑

t
(n)
i 6t

x
(n)
i −

∑
ti6t

xi

∣∣∣∣ 6
∑
ti6t

δ 6 kδ.

Therefore

lim
n→∞

|ψ(u)(ηn)(t)− ψ(u)(η)(t)| 6 kδ,

and if we let δ → 0, it follows that ψ(u)(ηn)(t) → ψ(u)(η)(t) as n →∞. Put

vi = τi + r, i ∈ {1, . . . , p}.
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For any δ < u∧r, relation (2.2) and the fact that η ∈ Λ imply that the functions ψ(u)(η)

and ψ(u)(ηn) (n > nδ) are monotone on each of the intervals [0, v1], [v1, v2], . . . , [vp, 1].

Now a combination of Proposition 2.4 and Lemma 12.9.2 in Whitt [69] yield that

dM1(ψ
(u)(ηn), ψ(u)(η)) → 0 as n → ∞. The application of Lemma 12.9.2 is justified

by continuity of ψ(u)(η) in the boundary points v1, . . . , vp. We conclude that ψ(u) is

continuous at η.

Example 2.9. This example shows that we can not replace the set Λ in Lemma 2.8

by the set Mp([0, 1]× Eu). Fix u > 0 and let

ηn = δ( 1
2
, 2u) + δ( 1

2
+ 1

n
,−2u), n > 3.

Then ηn
v−→ η as n →∞, where

η = δ( 1
2
, 2u) + δ( 1

2
,−2u).

Clearly η ∈ Mp([0, 1] × Eu) (but η /∈ Λ). It is straightforward to obtain ψ(u)(ηn)(t) =

2u · 1[ 1
2
, 1
2
+ 1

n
)(t) and ψ(u)(η)(t) = 0 for any t ∈ [0, 1]. For all parametric representations

(rn, vn) ∈ Π(ψ(u)(ηn)) and (r, v) ∈ Π(ψ(u)(η)) we have

‖vn − v‖[0,1] = 2u.

Therefore dM1(ψ
(u)(ηn), ψ(u)(η)) > 2u for all n > 3, yielding that ψ(u)(ηn) does not

converge to ψ(u)(η) as n → ∞. Hence ψ(u) is not continuous at η, and we conclude

that ψ(u) is not continuous on the set [0, 1]× Eu.

The following lemma claims that under a certain assumption on the tail process,

the point process N (u) defined in Theorem 1.36 almost surely belongs to the set Λ.

Lemma 2.10. Assume that with probability one, the tail process (Yi)i∈Z in (1.12) has

no two values of the opposite sign. Then P(N (u) ∈ Λ) = 1.
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Proof. From the definition of the tail process (Yi)i∈Z and Definition 1.5, we have for

all j ∈ Z and r ∈ (0, 1),

P(Yj ∈ (1− r, 1 + r)) = lim
n→∞

nP
(
Xj/an ∈ (1− r, 1 + r), |X0| > an

)

nP(|X0| > an)

6 lim
n→∞

nP
(
Xj/an ∈ (1− r, 1 + r)

)

nP(|X0| > an)

= µ((1− r, 1 + r)).

Now letting r → 0 and taking into account the form of the limiting measure µ we

obtain that

P(Yj = 1) 6 µ({1}) = 0,

i.e. P(Yj = 1) = 0. Similarly it holds that P(Yj = −1) = 0. Therefore P(Yj = ±1) = 0

for every j, and this implies

P
( ∑

j

δYj
({±1}) = 0

)
= P

( ⋂
j

{Yj 6= ±1}
)

= 1− P
( ⋃

j

{Yj = ±1}
)

> 1−
∑

j

P(Yj = ±1) = 1,

i.e. P
( ∑

j δYj
({±1}) = 0

)
= 1. From the definition of the processes

∑
j δZij

in Theorem

1.36, it follows that P
( ∑

j δZij
({±1}) = 0

)
= 1 for every i. From here we immediately

conclude that P(N (u)([0, 1] × {±u}) = 0) = 1. From the definition of the tail process

(Yi)i∈Z we know that P(Yi = ±∞) = 0 for any i ∈ Z. Therefore we obtain that

P(N (u)([0, 1] × {±∞}) = 0) = 1. Together with the fact that P(
∑

i δT
(u)
i

({0, 1}) =

0) = 1, this implies P(N (u) ∈ Λ1) = 1.

Further, the assumption that with probability one the tail process (Yi)i∈Z has no

two values of the opposite sign yields P(N (u) ∈ Λ2) = 1.

Remark 2.11. It is straightforward to see that the conclusion of Lemma 2.10 holds

if we replace the point process N (u) by N (u)
∣∣
[0,1]×Eu

.
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Remark 2.12. Taking in account Lemma 2.8 and Lemma 2.10, we see that the sum-

mation functional ψ(u) is almost surely continuous with respect to the distribution of

N (u).

The following proposition gives some sufficient conditions under which a Poisson

process with state space [0, 1] × Eu almost surely belongs to the set Λ. The proof of

this result is a slight modification of the considerations in Resnick [60, p. 222].

Proposition 2.13. Suppose N is a Poisson process with mean measure LEB × κ,

where LEB is the Lebesgue measure on [0, 1] and κ is a Radon measure on Eu such

that κ({±u,±∞}) = 0. Then P(N ∈ Λ) = 1.

Proof. First, we have that

LEB× κ({0} × Eu) = LEB({0}) · κ(Eu) = 0,

since κ(Eu) 6 κ(Eu) < ∞. Taking into account the definition of the Poisson process

(see Example 1.20), this implies that

P(N({0} × Eu) = 0) = 1.

Similarly, we have P(N({1} × Eu) = 0) = 1. Further, since

LEB× κ([0, 1]× {±u,±∞}) = LEB([0, 1]) · κ({±u,±∞}) = 0,

it follows that P(N([0, 1]× {±u,±∞}) = 0) = 1. Hence P(N ∈ Λ1) = 1.

One can write N in the form

N
d
=

ξ∑
i=1

δ(Ti, Ji),

where ξ is a Poisson random variable with parameter LEB × κ([0, 1] × Eu), {Ti, i >

1} are i.i.d. uniformly distributed on (0, 1), {Ji, i > 1} are i.i.d. with distribution
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κ(Eu∩·)/κ(Eu), and ξ is independent of {(Ti, Ji), i > 1} (see Resnick [60, p. 143, 147]).

Then

P(some vertical line contains two points of N) = P
( ⋃

16i<j6ξ

{Ti = Tj}
)

6
∑

16i<j<∞
P(Ti = Tj) = 0

This suffices to conclude that P(N ∈ Λ2) = 1.

2.3 Main theorem

Let (Xn) be a strictly stationary sequence of random variables, jointly regularly varying

with index α ∈ (0, 2) and tail process (Yi)i∈Z. The theorem below gives conditions

under which its partial sum process satisfies a nonstandard functional limit theorem

with a non-Gaussian α–stable Lévy process as a limit. Recall that the distribution of

a Lévy process V ( · ) is characterized by its characteristic triple, i.e. the characteristic

triple (a, ν, b) of the infinitely divisible distribution of V (1). The description of the

characteristic triple of the limit process will be in terms of the measures ν(u) (u > 0)

on E defined for x > 0 by

ν(u)(x,∞] = u−α P

(
u

∑
i>0

Yi 1{|Yi|>1} > x, sup
i6−1

|Yi| 6 1

)
,

ν(u)[−∞,−x) = u−α P

(
u

∑
i>0

Yi 1{|Yi|>1} < −x, sup
i6−1

|Yi| 6 1

)
.

(2.3)

In the case α ∈ [1, 2), we will need to assume that the contribution of the smaller

increments of the partial sum process is close to its expectation.

Condition 2.14. For all δ > 0,

lim
u↓0

lim sup
n→∞

P

[
max
16k6n

∣∣∣∣
k∑

i=1

(
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
))∣∣∣∣ > δ

]
= 0.
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Condition 2.14 holds for instance if (Xn)n is ρ–mixing at a certain rate; see Propo-

sition 2.19 in Section 2.4, where some variations of the following theorem are discussed

as well.

Theorem 2.15. Let (Xn)n∈N be a strictly stationary sequence of random variables,

regularly varying with index α ∈ (0, 2), and such that its tail process (Yi)i∈Z almost

surely has no two values of the opposite sign. Suppose that the mixing condition A′(an)

and the anti-clustering condition AC(an) hold, where (an) is a sequence of positive real

numbers such that nP(|X1| > an) → 1 as n → ∞. If α ∈ [1, 2), also suppose that

Condition 2.14 holds. Then the partial sum stochastic process

Vn(t) =

bntc∑

k=1

Xk

an

− bntcE
(

X1

an

1{ |X1|
an
61

}
)

, t ∈ [0, 1], (2.4)

satisfies

Vn
d−→ V, n →∞,

in D[0, 1] endowed with the M1 topology, where V ( · ) is an α–stable Lévy process with

characteristic triple (0, ν, b), where

b = lim
u→0

[ ∫

{x : u<|x|61}
x ν(u)(dx)−

∫

{x : u<|x|61}
xµ(dx)

]

and ν is the vague limit of ν(u) as u ↓ 0, with ν(u) as in (2.3) and µ as in (1.8).

Proof. Note that from Theorem 1.36 and the fact that |Yn| → 0 almost surely as

|n| → ∞, the random variables

u
∑

j

Zij1{|Zij |>1}

are i.i.d. and almost surely finite. Define

N̂ (u) =
∑

i

δ
(T

(u)
i , u

P
j Zij1{|Zij |>1})

.
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Then by Proposition 5.3 in Resnick [60], N̂ (u) is a Poisson process with mean measure

θu−αLEB× F (u), (2.5)

where F (u) is the distribution of the random variable u
∑

j Z1j1{|Z1j |>1}. But for 0 6

s < t 6 1 and x > 0, using the fact that the distribution of
∑

j δZ1j
is equal to

the one of
∑

j δYj
conditionally on the event {supi6−1 |Yi| 6 1} and the fact that

P(supi6−1 |Yi| 6 1) = θ > 0 (see Section 1.6), we have

θu−αLEB× F (u)([s, t]× (x,∞]) = θu−α(t− s)F (u)((x,∞])

= θu−α(t− s)P

(
u

∑
j

Z1j1{|Z1j |>1} > x

)

= θu−α(t− s)P

(
u

∑
j

Yj1{|Yj |>1} > x

∣∣∣∣ sup
i6−1

|Yi| 6 1

)

= θu−α(t− s)
P

(
u

∑
j Yj1{|Yj |>1} > x, supi6−1 |Yi| 6 1

)

P(supi6−1 |Yi| 6 1)

= u−α(t− s)P

(
u

∑
j

Yj1{|Yj |>1} > x, sup
i6−1

|Yi| 6 1

)

= LEB× ν(u)([s, t]× (x,∞]).

The same can be done for the sets of the form [s, t] × [−∞,−x), so that the mean

measure in (2.5) is equal to LEB× ν(u).

Consider now

ψ(u)(Nn | [0,1]×Eu)( · ) =
∑

i/n≤ ·

Xi

an

1{ |Xi|
an

>u
},

which by Corollary 1.38, Lemma 2.8, Lemma 2.10 (in fact Remark 2.11) and the

continuous mapping theorem (see for instance Theorem 3.1 in Resnick [60]) converges

in distribution in D[0, 1] under the M1 metric to

ψ(u)(N (u)
∣∣
[0,1]×Eu

)( · ) =
∑

T
(u)
i 6 ·

∑
j

uZij1{|Zij |>1}.
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Let

Ñ (u) =
∑

i

δ
(Ti, K

(u)
i )

be a Poisson process with mean measure LEB× ν(u). Since

ψ(u)(N (u)
∣∣
[0,1]×Eu

) = ψ(u)(N̂ (u))
d
= ψ(u)(Ñ (u)),

we obtain

L(u)
n ( · ) :=

bn · c∑
i=1

Xi

an

1{ |Xi|
an

>u
} d−→ L(u)( · ) :=

∑
Ti6 ·

K
(u)
i , as n →∞, (2.6)

in D[0, 1] under the M1 metric. From relation (1.4) (in the one-dimensional case),

Proposition 1.2 and Theorem 1.6 (iii) we have, for any t ∈ [0, 1], as n →∞,

bntcE
(

X1

an

1{
u<

|X1|
an
61

}
)

=
bntc
n

∫

{x : u<|x|61}
xnP

(
X1

an

∈ dx

)

→ t

∫

{x : u<|x|61}
xµ(dx). (2.7)

This convergence is uniform in t and hence

bn · cE
(

X1

an

1{
u<

|X1|
an
61

}
)
→ ( · )

∫

{x : u<|x|61}
xµ(dx) (2.8)

in the M1 metric on D[0, 1].

Put

au =

∫

{x : u<|x|61}
xµ(dx),

and define the function x(u) : [0, 1] → R by x(u)(t) = tau. The function x(u) is continu-

ous, and hence it belongs to D[0, 1]. Define now h : D[0, 1] → D[0, 1] by h(x) = x−x(u).

An application of Proposition 2.5 yields that h is a continuous function. Hence by the

continuous mapping theorem we obtain h(L
(u)
n )

d−→ h(L(u)), i.e.

L(u)
n − x(u) d−→ L(u) − x(u), as n →∞, (2.9)
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in D[0, 1] under the M1 metric. Define

V (u)
n ( · ) :=

bn · c∑
i=1

Xi

an

1{ |Xi|
an

>u
} − bn · cE

(
X1

an

1{
u<

|X1|
an
61

}
)

,

V (u)( · ) := L(u)( · )− x(u)( · ) =
∑
Ti6 ·

K
(u)
i − ( · )

∫

{x : u<|x|61}
xµ(dx).

Next, we show that, for any δ > 0,

lim
n→∞

P[dM1(L
(u)
n − x(u), V (u)

n ) > δ] = 0. (2.10)

Since Skorohod’s M1 metric on D[0, 1] is bounded above by the uniform metric on

D[0, 1] (see the second statement in Proposition 2.2 and relation (2.1)) and |bxc−x| 6 1

for every x ∈ R, we have

P[dM1(L
(u)
n − x(u), V (u)

n ) > δ]

6 P
[

sup
06t61

∣∣∣bntcE
(X1

an

1{
u<

|X1|
an
61

})
− tau

∣∣∣ > δ
]

6 P
[

sup
06t61

|bntc − nt| ·
∣∣∣E

(X1

an

1{
u<

|X1|
an
61

})∣∣∣ >
δ

2

]

+P
[

sup
06t61

|t| ·
∣∣∣nE

(X1

an

1{
u<

|X1|
an
61

})
− au

∣∣∣ >
δ

2

]

6 P
[∣∣∣E

(X1

an

1{
u<

|X1|
an
61

})∣∣∣ >
δ

2

]
+ P

[∣∣∣nE
(X1

an

1{
u<

|X1|
an
61

})
− au

∣∣∣ >
δ

2

]
.

From this, using relation (2.7) (with t = 1), we obtain

lim sup
n→∞

P[dM1(L
(u)
n − x(u), V (u)

n ) > δ] = 0.

Therefore (2.10) holds. Now from relations (2.9), (2.10) and Slutsky’s theorem (see for

instance Theorem 3.4 in Resnick [60]), we obtain

V (u)
n ( · ) d−→ V (u)( · ), as n →∞, (2.11)
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in D[0, 1] under the M1 metric. The limit in (2.11) can be rewritten as

∑
Ti≤ ·

K
(u)
i − ( · )

∫

{x : u<|x|61}
x ν(u)(dx)

+ ( · )
(∫

{x : u<|x|61}
x ν(u)(dx)−

∫

{x : u<|x|61}
xµ(dx)

)
.

Note that the first two terms represent a Lévy–Ito representation of the Lévy process

with characteristic triple (0, ν(u), 0), see Resnick [60, p. 150]. The remaining term is

just a linear function of the form t 7→ t bu. As a consequence, the process V (u) is a

Lévy process for each u < 1, with characteristic triple (0, ν(u), bu), where

bu =

∫

{x : u<|x|61}
x ν(u)(dx)−

∫

{x : u<|x|61}
xµ(dx).

The next step is to show that V (u)(1) converges to an α–stable random variable

as u → 0. Here we shall use some facts from the proof of Theorem 3.1 in Davis and

Hsing [24]. First we have to show that all conditions from this theorem hold. Since the

random process (Xn) is regularly varying with index α ∈ (0, 2), and conditions A′(an)

and AC(an) hold, from Theorem 2.7 in Davis and Hsing [24] it follows that the point

process N∗
n, as defined in Section 1.6, converges to some N∗. From Proposition 4.2 in

Basrak and Segers [10] it follows that the case N∗ = o can never occur. Hence relation

(3.1) in Davis and Hsing [24] holds. Condition (3.2) in [24] holds, since it is implied

by Condition 2.14.

Theorem 12.5.1 (iv) in Whitt [69] implies that the function π : D[0, 1] → R defined

by π(x) = x(1) is continuous. Hence, by (2.11) and the continuous mapping theorem,

as n →∞,

V (u)
n (1)

d−→ V (u)(1). (2.12)

Now we distinguish two cases:
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Case 1. α ∈ (0, 1). From relation (3.4) in [24] we have, as n →∞,

V (u)
n (1) + nE

(
X1

an

1{
u<

|X1|
an
61

}
)

d−→ Tu(N
∗),

where Tu is the mapping from Mp(E) into R defined by

Tu

( ∞∑
i=1

δxi

)
=

∞∑
i=1

xi1{u<|xi|<∞}.

This together with (2.7) (with t = 1), by Corollary 2 in Chow and Teicher [20, p. 272],

imply

V (u)
n (1)

d−→ Tu(N
∗)−

∫

{x : u<|x|61}
xµ(dx).

Hence, from (2.12) we see that

V (u)(1)
d
= Tu(N

∗)−
∫

{x : u<|x|61}
xµ(dx).

By relation (3.5) in [24], Tu(N
∗)

d−→ T0(N
∗) as u → 0, and the limit is an α–stable

random variable. From the representation of the measure µ in (1.8) we obtain

lim
u→0

∫

{x : u<|x|61}
xµ(dx) = (p− q)

α

1− α
· lim

u→0
(1− u1−α) = (p− q)

α

1− α
.

Now a new application of Corollary 2 in [20] implies, as u → 0,

V (u)(1)
d
= Tu(N

∗)−
∫

{x : u<|x|61}
xµ(dx)

d−→ T0(N
∗)− (p− q)

α

1− α
.

Since T0(N
∗) is α–stable, the random variable T0(N

∗) − (p − q) α
1−α

is also α–stable

(this fact is a consequence of the representation of a stable random variable given in

Theorem 1.45). Thus V (u)(1) converges to an α–stable random variable.

Case 2. α ∈ [1, 2). From relation (3.8) in [24], we have, as n →∞,

V (u)
n (1)

d−→ Tu(N
∗)−

∫

{x : u<|x|61}
xµ(dx).
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Hence, from (2.12) we see that

V (u)(1)
d
= Tu(N

∗)−
∫

{x : u<|x|61}
xµ(dx).

By relation (3.9) in [24],

Tu(N
∗)−

∫

{x : u<|x|61}
xµ(dx)

d−→ some S, as u → 0,

where the limit is an α–stable random variable. Thus V (u)(1)
d−→ S.

In both cases we conclude that V (u)(1) converges, as u → 0, to an α–stable random

variable. Since every stable random variable is infinitely divisible, by Theorem 13.12

in Kallenberg [40], there exists a Lévy process V ( · ) such that

V (u)(1)
d−→ V (1).

Hence by Theorem 13.17 in [40], there exist some processes Ṽ (u) d
= V (u) with

lim
u→0

P

(
sup

06t61
|Ṽ (u)(t)− V (t)| > δ

)
= 0,

for every δ > 0. Since the M1 metric on D[0, 1] is bounded above by the uniform

metric on D[0, 1], it follows that

lim
u→0

P(dM1(Ṽ
(u), V ) > δ) = 0,

and this immediately implies Ṽ (u)( · ) d−→ V ( · ) (see for instance Theorem 3.4 in Resnick

[60]), i.e.

V (u)( · ) d−→ V ( · ), as u → 0, (2.13)

in D[0, 1] with the M1 metric. The process V ( · ) has characteristic triple (0, ν, b),

where ν is the vague limit of ν(u) as u → 0 and b = limu→0 bu, see Theorem 13.14

in Kallenberg [40]. Since the random variable V (1) has an α–stable distribution, it

follows that the process V ( · ) is α–stable.
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If we show that

lim
u↓0

lim sup
n→∞

P[dM1(V
(u)
n , Vn) > δ] = 0

for any δ > 0, then from (2.11), (2.13) and Theorem 3.5 in Resnick [60] we will have,

as n →∞,

Vn( · ) d−→ V ( · )

in D[0, 1] with the M1 metric. Once again, since the M1 metric on D[0, 1] is bounded

above by the uniform metric on D[0, 1], it suffices to show that

lim
u↓0

lim sup
n→∞

P

(
sup

06t61
|V (u)

n (t)− Vn(t)| > δ

)
= 0. (2.14)

Recalling the definitions, we have

lim
u↓0

lim sup
n→∞

P

(
sup

06t61
|V (u)

n (t)− Vn(t)| > δ

)

= lim
u↓0

lim sup
n→∞

P

[
sup

06t61

∣∣∣∣
bntc∑
i=1

Xi

an

1{ |Xi|
an
6u

} − bntcE
(

X1

an

1{ |X1|
an
6u

}
)∣∣∣∣ > δ

]

= lim
u↓0

lim sup
n→∞

P

[
sup

06t61

∣∣∣∣
bntc∑
i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]

= lim
u↓0

lim sup
n→∞

P

[
max
16k6n

∣∣∣∣
k∑

i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]
.

Therefore we have to show

lim
u↓0

lim sup
n→∞

P

[
max
16k6n

∣∣∣∣
k∑

i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]
= 0. (2.15)

For α ∈ [1, 2) this relation is simply Condition 2.14. Therefore it remains to show

(2.15) for the case when α ∈ (0, 1). Hence assume α ∈ (0, 1). For an arbitrary (and

fixed) δ > 0 define

I(u, n) = P

[
max
16k6n

∣∣∣∣
k∑

i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]
.
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Using stationarity and Chebyshev’s inequality we get the bound

I(u, n) 6 P

[ n∑
i=1

∣∣∣∣
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)∣∣∣∣ > δ

]

6 δ−1E

[ n∑
i=1

∣∣∣∣
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)∣∣∣∣

]

6 2δ−1nE

( |X1|
an

1{ |X1|
an
6u

}
)

= 2δ−1u · nP(|X1| > an) · P(|X1| > uan)

P(|X1| > an)
· E(|X1| 1{|X1|6uan})
uanP(|X1| > uan)

. (2.16)

Since X1 is a regularly varying random variable with index α, an application of Propo-

sition 1.8 gives

P(|X1| > uan)

P(|X1| > an)
→ u−α,

as n →∞. By Theorem 1.12

lim
n→∞

E(|X1| 1{|X1|6uan})
uanP(|X1| > uan)

=
α

1− α
.

Thus from (2.16), taking into account the fact that nP(|X1| > an) → 1 as n →∞, we

get

lim sup
n→∞

I(u, n) ≤ 2δ−1 α

1− α
u1−α.

Letting u → 0, since 1− α > 0, we finally obtain

lim
u↓0

lim sup
n→∞

I(u, n) = 0,

and relation (2.15) holds. Therefore Vn
d−→ V as n → ∞ in D[0, 1] endowed with the

M1 topology.

2.4 Discussion

In this section we revisit the conditions and the conclusions of Theorem 2.15 and

provide some additional insights. Since the measure ν is the Lévy measure of a stable
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random variable V (1), it can be represented in the form given in Remark 1.47 (see

Remark 2.16 below). In case α ∈ (0, 1), the centering function in the definition of Vn

can be removed (see Remark 2.17 below). In the other case, α ∈ [1, 2), the centering

function cannot be omitted, and one way of checking Condition 2.14 is via ρ–mixing

as we show in Proposition 2.19. Finally, in Theorem 2.15 we can not replace the M1

topology by the J1 topology (see Remark 2.20 below).

Remark 2.16. The Lévy measure ν satisfies the scaling property

ν(sB) = s−αν(B), s > 0, B ∈ B(E),

(see Theorem 1.44). In particular, as in Remark 1.47, ν can be written as

ν(dx) =
(
c1 1(0,∞)(x) + c2 1(−∞,0)(x)

) |x|−α−1 dx,

for some nonnegative constants c1 and c2, and therefore ν({x}) = 0 for every x ∈ E.

Thus, from Theorem 1.4 and the fact that the spectral process (Θi)i∈Z is independent

of |Y0| (see Theorem 3.1 in Basrak and Segers [10]), we have

c1 = α ν(1,∞] = lim
u→0

α ν(u)(1,∞]

= lim
u→0

α u−α P

(
u

∑
i>0

Yi 1{|Yi|>1} > 1, sup
i6−1

|Yi| 6 1

)

= lim
u→0

α u−α

∫ ∞

1

P

(
u

∑
i>0

rΘi 1{r|Θi|>1} > 1, sup
i6−1

r|Θi| 6 1

)
d(−r−α)

= lim
u→0

α

∫ ∞

u

P

(∑
i>0

rΘj 1{r|Θj |>u} > 1, sup
i6−1

r|Θi| 6 u

)
d(−r−α),

and similarly

c2 = lim
u→0

α

∫ ∞

u

P

( ∑
i>0

rΘj 1{r|Θj |>u} < −1, sup
i6−1

r|Θi| 6 u

)
d(−r−α).
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Remark 2.17. If α ∈ (0, 1), the centering function in the definition of the stochastic

process Vn( · ) can be removed and this removing affects the characteristic triple of the

limiting process in the way we describe here.

First, note that for arbitrary random variable X and x > 0 it holds

X1{|X|6x} = X+1{X+6x} −X−1{X−6x},

where X+ = max{X, 0} and X− = max{−X, 0} are the positive and negative parts of

X.

From relation (1.7) and the fact that the sequence (an) is chosen such that nP(|X1| >
an) → 1, we obtain, as n →∞,

nP(X+
1 > an) =

P(X1 > an)

P(|X1| > an)
· nP(|X1| > an) → p,

and similarly nP(X−
1 > an) → q = 1− p. We distinguish two cases:

Case 1. p ∈ (0, 1). Since X1 is regularly varying with index α and p, q > 0, X+
1 and

X−
1 are also regularly varying with index α (we can see this through the statement in

Remark 1.10 equivalent to regular variation). Therefore by Theorem 1.12, as n →∞,

n E

(
X1

an

1{ |X1|
an
61

}
)

= n E

(
X+

1

an

1{X+
1

an
61

}
)
− n E

(
X−

1

an

1{X−1
an
61

}
)

= nP(X+
1 > an) ·

E
(
X+

1 1{X+
1 6an}

)

anP(X+
1 > an)

− nP(X−
1 > an) ·

E
(
X−

1 1{X−
1 6an}

)

anP(X−
1 > an)

→ (p− q)
α

1− α
.

Case 2. p = 0 or 1. Assume p = 1 (the case when p = 0 can be treated similarly and is

here omitted). Then X+
1 is regularly varying with index α and therefore it holds that

n E

(
X+

1

an

1{X+
1

an
61

}
)
→ p

α

1− α
=

α

1− α
, as n →∞.
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This and Theorem 1.12 imply that, as n →∞,

n E

(
X−

1

an

1{X−1
an
61

}
)

= n E

( |X1|
an

1{ |X1|
an
61

}
)
− n E

(
X+

1

an

1{X+
1

an
61

}
)

→ α

1− α
− α

1− α
= 0.

Therefore, as n →∞,

n E

(
X1

an

1{ |X1|
an
61

}
)

= n E

(
X+

1

an

1{X+
1

an
61

}
)
− n E

(
X−

1

an

1{X−1
an
61

}
)

→ α

1− α
− 0 = (p− q)

α

1− α
.

In both cases we conclude that, as n →∞,

bn · cE
(

X1

an

1{ |X1|
an
61

}
)
→ ( · )(p− q)

α

1− α

in the M1 metric on D[0, 1], which leads to

bn · c∑

k=1

Xk

an

d−→ V ( · ) + ( · )(p− q)
α

1− α

in D[0, 1] endowed with the M1 topology. The characteristic triple of the limiting

process is therefore (0, ν, b′) with b′ = b + (p− q)α/(1− α).

Example 2.18. Consider the process

Xn = Zn − Zn−1, n ∈ Z,

where (Zn) is an i.i.d. sequence of random variables with common distribution given

by the probability density function

f(x) =

{
(α/2)|x|−(α+1) if |x| > 1,

0 otherwise,

where α ∈ (0, 1). Then the process (Xn) is regularly varying with index α and

bn·c∑

k=1

Xk

an

=
Zbn·c − Z0

an

fidi−→ 0. (2.17)
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But since, as is known, supt∈[0,1] Zbntc/an converges in distribution to a nonzero limit

(see Proposition 7.2 in Resnick [60]) and the functional supt∈[0,1] is continuous in the

M1 topology (see Skorohod [65]), the ”fidi” convergence in (2.17) can not be replaced

by convergence in distribution in the M1 topology. Therefore the process Vn( · ) does

not converge in distribution in D[0, 1] endowed with the M1 topology.

The process (Xn) belongs to a class of finite order MA processes. In Section 4.1

we will analyze these processes in detail, but let say here that the only condition in

Theorem 2.15 that (Xn) does not satisfy is the one on the tail process. Indeed, if (Yn)

is the tail process of (Xn), then a standard regular variation argument and Lemma

1.2. in Cline [21] imply

P(Y0 > 1, Y1 < −1) = lim
x→∞

P(X0 > x,X1 < −x)

P(|X0| > x)

= lim
x→∞

P(Z0 − Z−1 > x, Z1 − Z0 < −x)

P(|X0| > x)

> lim sup
x→∞

P(Z0 > 2x, |Z−1| 6 x, |Z1| 6 −x)

P(|X0| > x)

= lim sup
x→∞

P(Z0 > 2x, |Z−1| 6 x, |Z1| 6 −x)

P(|X0| > x)

= lim sup
x→∞

P(Z0 > 2x)P(|Z−1| 6 x)P(|Z1| 6 −x)

P(|X0| > x)

= lim sup
x→∞

P(Z0 > 2x)

P(|Z0| > 2x)
· P(|Z0| > 2x)

P(|X0| > 2x)
· P(|X0| > 2x)

P(|X0| > x)
· [P(|Z1| 6 x)]2

=
1

2
· 1

2
· 2−α · 1 > 0.

Therefore P(Y0 > 0, Y1 < 0) > P(Y0 > 1, Y1 < −1) > 0, i.e. the tail process (Yn) has

two values of the opposite sign with a positive probability. The remaining conditions

from Theorem 2.15 hold (for details see Section 4.1). Thus the condition on the tail

process as given in Theorem 2.15 can not be omitted.
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Condition 2.14 is in general difficult to check. The next proposition gives one

sufficient condition for Condition 2.14 to hold.

Proposition 2.19. Let (Xn) be a strictly stationary sequence of regularly varying

random variables with index α ∈ [1, 2), and (an) a sequence of positive real numbers

such that nP(|X1| > an) → 1 as n →∞. If the sequence (Xn) is ρ-mixing with

∑
j>0

ρb2j/3c < ∞,

then Condition 2.14 holds.

Proof. Let δ > 0 be arbitrary. As in the proof of Theorem 2.15, define

I(u, n) = P

[
max
16k6n

∣∣∣∣
k∑

i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]
.

Then from Corollary 2.1 in Peligrad [54] we obtain

I(u, n) 6 δ−2C exp

(
8

blog2 nc∑
j=0

ρb2j/3c

)
n E

[{
X1

an

1{ |X1|
an
6u

} − E

(
X1

an

1{ |X1|
an
6u

}
)}2]

,

for some positive constant C. By assumption there exists a constant L > 0 such that,

for all n ∈ N,

exp

(
8

blog2 nc∑
j=0

ρb2j/3c

)
6 L.

Therefore

I(u, n) 6 CLδ−2 n E

[(
X1

an

1{ |X1|
an
6u

}
)2]

= CLδ−2u2 · E(X2
11{|X1|6uan})

(uan)2P(|X1| > uan)
· nP(|X1| > uan).

Now using Theorem 1.12 and the fact that X1 is regularly varying (more precisely

relation (1.7)), we obtain

lim sup
n→∞

I(u, n) 6 CLδ−2 α

2− α
u2−α.

Since 2− α > 0, we find limu↓0 lim supn→∞ I(u, n) = 0, yielding Condition 2.14.
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Remark 2.20. Theorem 2.15 becomes false if we replace the M1 topology by Skoro-

hod’s J1 topology: for finite order MA processes with at least two nonzero coefficients,

Theorem 1 in Avram and Taqqu [3] shows that the sequence of partial sum stochastic

processes Vn cannot have a weak limit in the J1 topology.

The problem in our proof if we consider the J1 topology is Lemma 2.8, which in

this case does not hold. Fix u > 0 and define

ηn = δ( 1
2
− 1

n
, 2u) + δ( 1

2
, 3u), n > 3.

Then ηn
v−→ η as n →∞, where

η = δ( 1
2
, 2u) + δ( 1

2
, 3u).

For tn = 1/2− 1/n and every λ ∈ ∆ we have

ψ(u)(ηn)(tn) = 2u and (ψ(u)(η) ◦ λ)(tn) ∈ {0, 5u}.

Hence ‖ψ(u)(η) ◦ λ − ψ(u)(ηn)‖[0,1] > 2u, and this implies dJ1(ψ
(u)(η), ψ(u)(ηn)) > 2u

for all n > 3, yielding that ψ(u)(ηn) does not converge to ψ(u)(η) as n →∞. Therefore

ψ(u) is not continuous at η. Since clearly η ∈ Λ, we conclude that the summation

functional ψ(u) : Mp([0, 1]×Eu) → D[0, 1] is not continuous on the set Λ, when D[0, 1]

is endowed with Skorohod’s J1 topology.





Chapter 3

J1 convergence in functional limit
theorems

In this chapter we consider functional limit theorems in which the convergence is given

with respect to Skorohod’s J1 topology. This happens in the i.i.d. case, the case of

dependent random variables with isolated extremes and in the case when we do not

deal with single random variables but with blocks of consecutive random variables of

an appropriately chosen size.

3.1 The i.i.d. case

Functional limit theorems were at first studied for independent and identically dis-

tributed random variables. Note that if (Xn)n∈N is an i.i.d. sequence of regularly vary-

ing random variables with index α ∈ (0, 2) such that nP(|X1| > an) → 1 as n →∞, for

some sequence of positive real numbers (an), then all conditions in Theorem 2.15 are

satisfied. Indeed from Remark 1.15 it follows that the random process (Xn) is regularly

varying with index α, while from the representation of the tail process for independent

random variables in Example 1.18 we know that it almost surely has no two values of

the opposite sign. The independence implies that (Xn) is strongly mixing, which by

Proposition 1.34 further implies condition A′(an). Since the random variables Xi are

79
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independent and identically distributed we obtain that

P
(

max
m6|i|6rn

|Xi| > uan

∣∣∣ |X0| > uan

)
6 2(rn −m + 1)P(|X1| > uan)

=
2(rn −m + 1)

n
· nP(|X1| > uan).

From the definition of a sequence (rn) (see Definition 1.35) and the fact that X1 is a

regularly varying random variable, we obtain that, as n →∞,

rn −m + 1

n
→ 0 and nP(|X1| > uan) → u−α.

Hence

lim
m→∞

lim sup
n→∞

P
(

max
m6|i|6rn

|Xi| > uan

∣∣∣ |X0| > uan

)
= 0,

and condition AC(an) holds. Since the random variables X1, X2, . . . are independent,

(Xn) is ρ–mixing with ρn = 0 for every n ∈ N. Condition 2.14 now holds by Proposition

2.19. Therefore by Theorem 2.15 we have that the partial sum stochastic process Vn

converges in distribution in D[0, 1] endowed with the M1 topology, to an α–stable Lev́y

process.

In this case, the M1 convergence can be replaced by the J1 convergence. This

stronger result is well know in the literature, see Proposition 3.4 in Resnick [58] and

Corollary 7.1 in Resnick [60]. These results are proved even in D[0,∞), thus with

infinite time horizon. For completeness and to make an easier presentation of the

results in the next sections, we give here the proof of the functional limit theorem

for the i.i.d. case, but on D[0, 1] endowed with the J1 topology. The proof, which we

divide in several steps, follows the arguments given in Resnick [60], and its structure is

very similar to the proof of Theorem 2.15. The first step is to establish a convergence

in distribution of a sequence of time-space point processes

Nn =
n∑

i=1

δ(i/n,Xi/an), n ∈ N,
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similar to the one given in Theorem 1.36, with the difference that now the limiting

process will be a Poisson random measure and the convergence will take place on the

whole [0, 1]× E. We start with two lemmas that will be useful in the sequel.

Lemma 3.1. If (Zn) and (Tn) are two sequences of random variables on the same

probability space such that (Zn) converges in distribution to some random variable Z

and Tn
P−→ 0, then ZnTn

P−→ 0 as n →∞.

For a proof of this result see for instance Chow and Teicher [20, p. 272]. Suppose

now H : R → (a, b) is a nondecreasing function on R with range (a, b), where −∞ 6

a < b 6 ∞. Define the inverse H← : (a, b) → R of H as

H←(y) = inf{s : H(s) > y}

(with the convention that the infimum of an empty set is +∞). Then the following

result holds (for a proof see for instance Proposition 0.1 in Resnick [59]).

Lemma 3.2. If Hn, n > 0, are nondecreasing functions on R with range (a, b) and

Hn(x) → H0(x) for all x ∈ C(H0), then H←
n (y) → H←

0 (y) for all y ∈ (a, b)∩C(H←
0 ).1

Now we are ready to describe the convergence of a sequence of point processes (Nn).

We follow the proof of Theorem 6.3 in Resnick [60] (a different proof of this result is

given in Proposition 3.1 in Resnick [58]).

Proposition 3.3. Let (Xn) be a sequence of i.i.d. random variables such that, as

n →∞,

nP
(X1

an

∈ ·
)

v−→ µ(·), (3.1)

where (an) is a sequence of positive real numbers tending to ∞ and µ is a nonzero

Radon measure on (E,B(E)). Then, as n → ∞, Nn
d−→ N on [0, 1] × E, where N is

PRM(LEB× µ).

1Here C(H) denotes the set of all x ∈ R such that H is finite and continuous at x.
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Proof. From Example 1.24 (2) we know that the Laplace functional of the point process

N∗
n =

∑n
i=1 δXi/an is of the form

ΨN∗
n
(f) = (Ee−f(X1/an))n, f ∈ C+

K(E).

Therefore

ΨN∗
n
(f) = (Ee−f(X1/an))n =

(
1− E[n(1− e−f(X1/an))]

n

)n

=
(
1−

∫
E(1− e−f(x))nP(X1/an ∈ dx)

n

)n

,

and this, by (3.1) and Lemma 1.3 in Durrett [29, p. 80] (note that 1− e−f ∈ C+
K(E)),

as n →∞ converges to

exp
{
−

∫

E
(1− e−f(x)) µ(dx)

}
,

the Laplace functional of N∗ = PRM(µ) (see Example 1.24 (3)). Theorem 1.23 now

gives

N∗
n

d−→ N∗ = PRM(µ), as n →∞. (3.2)

Suppose now U1, . . . , Un are i.i.d. random variables uniformly distributed on (0, 1)

with order statistics

U1: n 6 U2: n 6 . . . 6 Un: n,

which are independent of {Xi : i = 1, 2, . . .}. Then by (3.2) and Lemma 1.25 we have

that, as n →∞,
n∑

i=1

δ(Ui, Xi/an)
d−→ PRM(LEB× µ).

But since, from the independence of {Ui} and {Xi}, we have that

n∑
i=1

δ(Ui: n, Xi/an)
d
=

n∑
i=1

δ(Ui, Xi/an)



3.1 The i.i.d. case 83

as random elements of M+([0, 1]× E), it holds that, as n →∞,

n∑
i=1

δ(Ui: n, Xi/an)
d−→ PRM(LEB× µ). (3.3)

If we prove that, as n →∞,

dv

( n∑
i=1

δ(i/n, Xi/an),

n∑
i=1

δ(Ui: n, Xi/an)

)
P−→ 0, (3.4)

where dv is the metric given in (1.3), this and (3.3), by Slutsky’s Theorem (see for

instance Theorem 3.4 in Resnick [60]), will give that, as n →∞,

n∑
i=1

δ(i/n, Xi/an)
d−→ PRM(LEB× µ),

i.e. Nn
d−→ N , and this proof will be completed.

By Proposition 1.26, for proving relation (3.4), it is enough to prove that for f ∈
C+

K([0, 1]× E), as n →∞,

∣∣∣∣
n∑

i=1

f
( i

n
,
Xi

an

)
−

n∑
i=1

f
(
Ui: n,

Xi

an

)∣∣∣∣
P−→ 0. (3.5)

Suppose the compact support of f is contained in [0, 1]×Eδ for some δ > 0. Then the

difference in (3.5) is bounded by

n∑
i=1

∣∣∣∣f
( i

n
,
Xi

an

)
− f

(
Ui: n,

Xi

an

)∣∣∣∣1{|Xi|>δan}

6 ωf, δ

(
sup
i6n

∣∣∣ i

n
− Ui: n

∣∣∣
) n∑

i=1

1{|Xi|>δan},

where ωf, δ is the modulus of continuity of the function f
∣∣
[0,1]×Eδ

, i.e.

ωf, δ(ρ) = sup{|f(x)− f(y)| : x,y ∈ [0, 1]× Eδ, d[0,1]×E(x,y) 6 ρ}.2

Define now the function h : Mp(E) → R by

h(η) = η(Eδ), η ∈ Mp(E).

2Recall the definition of the metric d[0,1]×E in Section 1.5.
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Then h is continuous on the set

Λ∗ = {η ∈ Mp(E) : η({±δ,±∞}) = 0}.

Indeed, take an arbitrary η ∈ Λ∗ and assume ηn
v−→ η in Mp(E) as n →∞. Since the set

Eδ is relatively compact and η(∂Eδ) = 0, from Theorem 1.4 we obtain that, as n →∞,

ηn(Eδ) → η(Eδ), i.e. h(ηn) → h(η). Therefore h is continuous at η, and then, since

η ∈ Λ∗ was arbitrary, on the set Λ∗. Since N∗ is a Poisson random measure, it holds

that P(N∗({±δ,±∞}) = 0) = 1, and this immediately implies that P(N∗ ∈ Λ∗) = 1.

Thus, if Dh denotes the set of discontinuity points of h, we have

P(N∗ ∈ Dh) 6 P(N∗ /∈ Λ∗) = 0.

The continuous mapping theorem (see Theorem 3.1 in Resnick [60]) applied to (3.2)

then yields that, as n →∞,

N∗
n(Eδ) = h(N∗

n)
d−→ h(N∗) = N∗(Eδ).

Therefore the sequence of random variables

n∑
i=1

1{|Xi|>δan} =
n∑

i=1

δXi/an(Eδ) = N∗
n(Eδ)

converges in distribution to N∗(Eδ) as n → ∞. Hence by Lemma 3.1 it is enough to

prove that, as n →∞,

ωf, δ

(
sup
i6n

∣∣∣ i

n
− Ui: n

∣∣∣
)

P−→ 0. (3.6)

Since the function f restricted to the set [0, 1] × Eδ is uniformly continuous (since it

is continuous on a compact set), it follows that ωf, δ(ρ) → 0 as ρ → 0. Therefore for

(3.6) to hold it is enough to prove that, as n →∞,

sup
i6n

∣∣∣ i

n
− Ui: n

∣∣∣ P−→ 0. (3.7)
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From the Glivenko-Cantelli theorem (see for instance Theorem 7.4 in Durrett [29,

p. 59]) we know that, as n →∞,

sup
x∈[0,1]

∣∣∣∣
1

n

n∑
i=1

1{Ui6x} − x

∣∣∣∣
a.s.−−→ 0. (3.8)

Put

ξn(x, ω) =
1

n

n∑
i=1

1{Ui(ω)6x} and ξ0(x, ω) = x

for all x ∈ R and ω ∈ Ω, where (Ω,F , P) is the underlying probability space. Then

from (3.8) it follows that, for all x ∈ [0, 1] and almost all ω,

ξn(x, ω) → ξ0(x, ω), as n →∞.

Since the functions x 7→ ξn(x, ω) are nondecreasing, by Lemma 3.2 we have that, for

almost all ω,

ξ←n (x, ω) → ξ←0 (x, ω) = x, for all x ∈ [0, 1].

This gives monotone functions converging to a continuous limit and hence convergence

is uniform on [0, 1] (see for instance Proposition 2.1 in Resnick [60]), i.e. for almost all

ω,

sup
x∈[0,1]

|ξ←n (x, ω)− x| → 0, as n →∞.

It is not hard to obtain

ξ←n (x, ω) =
n∑

i=1

Ui: n(ω)1( i−1
n

, i
n

](x), n ∈ N,

and

sup
i6n

∣∣∣Ui: n(ω)− i

n

∣∣∣ 6 sup
x∈[0,1]

∣∣∣∣
n∑

i=1

Ui: n(ω)1( i−1
n

, i
n

](x)− x

∣∣∣∣,

which yield that

sup
i6n

∣∣∣Ui: n − i

n

∣∣∣ a.s.−−→ 0.

This immediately implies (3.7) and the proof is completed.
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For the proof of the functional limit theorem for the i.i.d. case with respect to

Skorohod’s J1 topology we need a result on the continuity of the summation functional

ψ(u) defined in Section 2.2. This result will have the same role in the i.i.d. case as

Lemma 2.8 had in the proof of Theorem 2.15. Its proof is a slight modification of the

one given in Resnick [60, Section 7.2.3] (one has to replace the state space [0,∞)× E
with [0, 1]× Eu which is straightforward), and is therefore here omitted.

Lemma 3.4. The summation functional ψ(u) : Mp([0, 1]×Eu) → D[0, 1] is continuous

on the set Γ = Γ1 ∩ Γ2, when D[0, 1] is endowed with Skorohod’s J1 topology, where

Γ1 = {η ∈ Mp([0, 1]× Eu) : η({0, 1} × Eu) = η([0, 1]× {±∞,±u}) = 0},

Γ2 = {η ∈ Mp([0, 1]× Eu) : η({t} × Eu) 6 1 for all t ∈ [0, 1]}.

Observe that the elements of Γ2 have no two atoms with the same time coordinate.

Equivalently, we can say that for every η ∈ Γ2 no vertical line contains two points of

η.

Figure 3.1: An example of a point process belonging to the set Γ.

Now we come to the final step in proving the functional limit theorem for the i.i.d.

case. The proof of the following theorem follows the arguments presented in Resnick

[60, Theorem 7.1 and Corollary 7.1].
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Theorem 3.5. Let (Xn)n∈N be an i.i.d. sequence of regularly varying random variables

with index α ∈ (0, 2), and let (an) be a sequence of positive real numbers such that

nP(|X1| > an) → 1 as n →∞. Then the partial sum stochastic process

Vn(t) =

[nt]∑

k=1

Xk

an

− bntcE
(

X1

an

1{ |X1|
an
61

}
)

, t ∈ [0, 1], (3.9)

satisfies

Vn
d−→ V0, n →∞,

in D[0, 1] endowed with the J1 topology, where V0( · ) is an α–stable Lévy process with

characteristic triple (0, µ, 0), where the measure µ is the vague limit of nP(X1/an ∈ ·)
as n →∞.

Proof. From Proposition 3.3 we know that, as n →∞,

n∑

k=1

δ(k/n,Xk/an)
d−→ N =

∑

k

δ(tk, jk) = PRM(LEB× µ) (3.10)

on [0, 1]×E. Let u ∈ (0, 1) be arbitrary. Since by Theorem 1.6 (iii), µ({±u}) = 0, in a

similar way as in the first part of the proof of Proposition 2.13 we obtain P(N ∈ Γ′1) = 1,

where

Γ′1 = {η ∈ Mp([0, 1]× E) : η([0, 1]× {±u}) = 0}.

Since ∂[0,1]×E[0, 1] × Eu = [0, 1] × {±u}, from Proposition 1.28 we obtain that the

restriction map T : Mp([0, 1]× E) → Mp([0, 1]× Eu) defined by

Tm = m
∣∣
[0,1]×Eu

is continuous on the set Γ′1. Thus from relation (3.10) and the continuous mapping

theorem we get the restricted convergence

n∑

k=1

1{|Xk|>uan}δ(k/n,Xk/an)
d−→

∑

k

1{|jk|>u}δ(tk, jk) (3.11)
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on [0, 1]×Eu. In a similar way as in the proof of Proposition 2.13 we obtain P(N
∣∣
[0,1]×Eu

∈
Γ) = 1. From this, relation (3.11) and the continuous mapping theorem we obtain that,

as n →∞,
bn·c∑

k=1

Xk

an

1{|Xk|>uan}
d−→

∑
tk6·

jk1{|jk|>u} (3.12)

in D[0, 1] under the J1 metric.

Define the function fu : E→ [0,∞) with

fu(x) = x · 1{x : u<|x|61}(x), x ∈ E.

Then form the fact that µn(·) := nP(X1/an ∈ ·) v−→ µ(·) as n →∞, using Proposition

1.2 (note that µ(Dfu) = µ({±u,±1}) = 0 by Theorem 1.6 (iii)) we get
∫
E fu(x) µn(dx) →

∫
E fu(x) µ(dx), i.e.

n E

(
X1

an

1{
u<

|X1|
an
61

}
)
→

∫

{x : u<|x|61}
xµ(dx), as n →∞.

Therefore, for any t ∈ [0, 1], as n →∞,

bntcE
(

X1

an

1{
u<

|X1|
an
61

}
)

=
bntc
n

· n E

(
X1

an

1{
u<

|X1|
an
61

}
)

→ t

∫

{x : u<|x|61}
xµ(dx).

This convergence is uniform in t and hence

bn · cE
(

X1

an

1{
u<

|X1|
an
61

}
)
→ ( · )

∫

{x : u<|x|61}
xµ(dx) (3.13)

in the J1 metric on D[0, 1].

Put

au =

∫

{x : u<|x|61}
xµ(dx),

and define the function xu : [0, 1] → R by x(u)(t) = tau. The function x(u) is continuous,

and hence it belongs to D[0, 1]. Define now h : D[0, 1] → D[0, 1] by h(x) = x − x(u).
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Let show that h is continuous (with respect to the J1 topology on D[0, 1]). Take an

arbitrary x ∈ D[0, 1] and assume dJ1(xn, x) → 0 as n → ∞. Then from the first

statement in Proposition 2.2 it follows that there exists a sequence of functions (λn)

in ∆ such that, as n →∞,

‖λn − e‖[0,1] → 0 and ‖xn ◦ λn − x‖[0,1] → 0.

Then it holds that

‖h(xn) ◦ λn − h(x)‖[0,1] 6 ‖xn ◦ λn − x‖[0,1] + |au| · ‖λ− e‖[0,1] → 0.

Another application of Proposition 2.2 now gives that dJ1(h(xn), h(x)) → 0 as n →∞,

showing the function h is continuous at x. Since x was chosen arbitrary, h is continuous

on the whole D[0, 1]. Hence by the continuous mapping theorem from (3.12) we obtain,

as n →∞,

Ṽ (u)
n ( · ) :=

bn·c∑

k=1

Xk

an

1{ |Xk|
an

>u
} − ( · )au

d−→ V
(u)
0 ( · ) :=

∑
tk6·

jk1{|jk|>u} − ( · )au (3.14)

in D[0, 1] under the J1 metric. Define

V (u)
n ( · ) :=

bn·c∑

k=1

Xk

an

1{ |Xk|
an

>u
} − bn · cE

(
X1

an

1{
u<

|X1|
an
61

}
)

.

Then in a similar way as relation (2.10) in the proof of Theorem 2.15 we obtain, for

any δ > 0,

lim
n→∞

P[dJ1(Ṽ
(u)
n , V (u)

n ) > δ] = 0.

From this, relation (3.14) and Slutsky’s theorem (see Theorem 3.4 in Resnick [60]), we

get

V (u)
n ( · ) d−→ V

(u)
0 ( · ), as n →∞, (3.15)

in D[0, 1] under the J1 metric. From the Lévy-Itô representation of a Lévy process (see

Section 5.5.3 in Resnick [60], Section 2.5 in Kyprianou [44] or Theorem 19.2 in Sato
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[63]), there exists a Lévy process V0( · ) with characteristic triple (0, µ, 0) such that, as

u ↓ 0,

sup
t∈[0,1]

|V (u)
0 (t)− V0(t)| a.s.−−→ 0,

Since uniform convergence implies Skorohod’s J1 convergence, we get

dJ1(V
(u)
0 ( · ), V0( · )) → 0

almost surely as u ↓ 0, and hence since almost sure convergence implies convergence

in distribution,

V
(u)
0 ( · ) d−→ V0( · ), as u → 0, (3.16)

in D[0, 1] with the J1 metric.

If we show that

lim
u↓0

lim sup
n→∞

P[dJ1(V
(u)
n , Vn) > δ] = 0

for any δ > 0, then from (3.15), (3.16) and Theorem 3.5 in Resnick [60] we will have,

as n →∞,

Vn( · ) d−→ V0( · )

in D[0, 1] with the J1 metric. Since the J1 metric on D[0, 1] is bounded above by the

uniform metric on D[0, 1], it suffices to show that

lim
u↓0

lim sup
n→∞

P

(
sup

t∈[0,1]

|V (u)
n (t)− Vn(t)| > δ

)
= 0. (3.17)

Recalling the definitions, we have

P

(
sup

t∈[0,1]

|V (u)
n (t)− Vn(t)| > δ

)

= P

[
sup

t∈[0,1]

∣∣∣∣
bntc∑
i=1

Xi

an

1{ |Xi|
an
6u

} − bntcE
(

X1

an

1{ |X1|
an
6u

}
)∣∣∣∣ > δ

]

= P

[
max
16k6n

∣∣∣∣
k∑

i=1

{
Xi

an

1{ |Xi|
an
6u

} − E

(
Xi

an

1{ |Xi|
an
6u

}
)}∣∣∣∣ > δ

]
.
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By Kolmogorov’s inequality (for example see Theorem 8.2 in Durrett [29, p. 62]) and

the i.i.d. property of the random variables Xn, this has upper bound

6 δ−2Var

( n∑
i=1

Xi

an

1{ |Xi|
an
6u

}
)

= δ−2n Var

(
X1

an

1{ |X1|
an
6u

}
)

6 δ−2n E

[(
X1

an

)2

1{ |X1|
an
6u

}
]

= δ−2u2 · E(X2
11{|X1|6uan})

(uan)2P(|X1| > uan)
· nP(|X1| > uan).

Now using Theorem 1.12 and the fact that X1 is regularly varying with index α ∈ (0, 2),

we obtain

lim sup
n→∞

P

(
sup

t∈[0,1]

|V (u)
n (t)− Vn(t)| > δ

)
6 δ−2 α

2− α
u2−α.

Letting u ↓ 0, we easily get (3.17).

Finally, from Theorem 1.6 (ii) and Theorem 14.3. in Sato [63] it follows that the

process V0( · ) is α–stable.

As stated before, we presented here the detailed proof of the functional limit the-

orem for the i.i.d. case, which is well known in the literature, only for the sake of

completeness and for an easier presentation of the results in the next sections.

Remark 3.6. In Theorem 3.5 the converse also holds. Precisely, let (Xn) be an i.i.d.

sequence of random variables and let (an) be a sequence of positive real numbers such

that an →∞ as n →∞. Define the measure µ for x > 0 and α ∈ (0, 2) by

µ((x,∞]) = px−α, µ((−∞,−x]) = qx−α,

where p ∈ [0, 1] and q = 1 − p. If Vn
d−→ V0 as n → ∞, where Vn( · ) is the partial

sum stochastic process defined in (3.9) and V0( · ) is an α–stable Lévy process with
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characteristic triple (0, µ, 0), then the random variables Xn are regularly varying with

index α and, as n →∞,

nP
(X1

an

∈ ·
)

v−→ µ(·)

(see the necessity in Corollary 7.1 in Resnick [60]).

3.2 Isolated extremes

A regularly varying sequence of i.i.d. random variables has a tail process (Yn) whose

components, except Y0, are zeros (see Example 1.18). Hence its extremes are isolated.

A natural generalization of the functional limit theorem described in the previous

section is the one that involves dependent random variables with the same tail process

as in the i.i.d. case. One condition that assures this is the dependence condition D′

as given in Davis [22]. Functional limit theorems for processes with isolated extremes

can be found in Leadbetter and Rootzén [45] and Tyran-Kamińska [67]. We give here

a shortened proof of the functional limit theorem for such processes for the sake of

completeness and to make an illustration how the techniques used in the previous

section can be applied to one class of dependent random variables. The emphasis will

be on the convergence of point processes N∗
n to a Poisson random measure, as described

in Balan and Louhichi [5].

Suppose (Xn) is a strictly stationary and strongly mixing sequence of regularly

varying random variables with index α ∈ (0, 2) that satisfies condition D′, i.e.

lim
k→∞

lim sup
n→∞

n

bn/kc∑
i=1

P

( |X0|
an

> x,
|Xi|
an

> x

)
= 0, for all x > 0,

where (an) is a sequence of positive real numbers such that nP(|X0| > an) → 1 as

n →∞. It is straightforward to see that condition D′ implies the following condition

lim
n→∞

n

rn∑
i=1

P

( |X0|
an

> x,
|Xi|
an

> x

)
= 0, for all x > 0, (3.18)
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where (rn) is any sequence of positive integers such that rn → ∞ and rn/n → 0 as

n →∞.

The functional limit theorem in this case is given in the following result. As in

Theorem 2.15, here we will need to assume Condition 2.14 if α ∈ [1, 2).

Theorem 3.7. Let (Xn) be a strictly stationary and strongly mixing sequence of reg-

ularly varying random variables with index α ∈ (0, 2), that satisfies condition (3.18).

If α ∈ [1, 2), also suppose that Condition 2.14 holds. Then the partial sum stochastic

process

Vn(t) =

[nt]∑

k=1

Xk

an

− bntcE
(

X1

an

1{ |X1|
an
61

}
)

, t ∈ [0, 1],

satisfies

Vn
d−→ V0, n →∞,

in D[0, 1] endowed with the J1 topology, where V0( · ) is an α–stable Lévy process with

characteristic triple (0, µ, 0), where the measure µ is the vague limit of nP(X1/an ∈ ·)
as n →∞.

Proof. Recall N∗
n =

∑n
i=1 δXi/an . Put kn = bn/rnc and define

Ñn =
kn∑
i=1

Ñrn, i,

where Ñrn, i, i = 1, . . . , kn, are i.i.d. point processes distributed as N∗
rn

. The strong

mixing condition implies condition A(an) from Davis and Hsing [24]: for every f ∈
C+

K(E), as n →∞,

E exp
{
−

n∑
i=1

f
(Xi

an

)}
−

[
E exp

{
−

rn∑
i=1

f
(Xi

an

)}]kn → 0.

This condition implies that N∗
n converges in distribution if and only if Ñn does, and in

that case they have the same limit. Let show that N∗
n

d−→ N∗ = PRM(µ). It suffices to
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show, by Theorem 1.23, that for every f ∈ C+
K(E), as n →∞,

ΨN∗
n
(f) → ΨN∗(f).

For m 6 n put

Ψm, n(f) = E exp
{
−

m∑
i=1

f
(Xi

an

)}
.

Then ΨN∗
n
(f) = Ψn, n(f). Since Ñrn, i, i = 1, . . . , kn, are i.i.d. we have

Ψ eNn
(f) = (Ψrn, n(f))kn . (3.19)

In a similar way as in the proof of Theorem 2.6 in Balan and Louhichi [5], using

condition (3.18), stationarity and the regular variation property, we obtain that for

every f ∈ C+
K(E), as n →∞,

kn(1−Ψrn, n(f))− n(1−Ψ1, n(f)) → 0. (3.20)

For f ∈ C+
K(E) the function h : E→ [0,∞) defined by h(x) = 1−e−f(x) is also in C+

K(E).

Therefore the vague convergence nP(X1/an ∈ ·) v−→ µ(·) implies
∫

nh(X1/an) dP →
∫

h(x) µ(dx) as n →∞, i.e.

n(1−Ψ1, n(f)) = n
(
1− Ee−f

(
X1
an

))
→

∫

E
(1− e−f(x)) µ(dx). (3.21)

From relations (3.20) and (3.21) we immediately get

lim
n→∞

kn(1−Ψrn, n(f)) =

∫

E
(1− e−f(x)) µ(dx).

From this using Lemma 1.3 in Durrett [29, p. 80], since kn →∞ as n →∞, it follows

that, as n →∞,

(Ψrn, n(f))kn =
(
1− kn(1−Ψrn, n(f))

kn

)kn → exp
(
−

∫

E
(1− e−f(x)) µ(dx)

)
.



3.3 Functional limit theorem with different partial sum process 95

Hence, by (3.19), as n →∞,

Ψ eNn
(f) → exp

(
−

∫

E
(1− e−f(x)) µ(dx)

)
.

Since N∗
n and Ñn converge in distribution to the same limit, we have that, as n →∞,

ΨN∗
n
(f) → exp

(
−

∫

E
(1− e−f(x)) µ(dx)

)
.

Since the limit is the Laplace functional of N∗ = PRM(µ) (see Example 1.24 (3)), we

conclude that

N∗
n

d−→ N∗ = PRM(µ).

Now repeating the proof of Proposition 3.3 from relation (3.2) we obtain that, as

n →∞,

Nn =
n∑

i=1

δ(i/n,Xi/an)
d−→ N = PRM(LEB× µ).

This is in fact relation (3.10) in the proof of Theorem 3.5. We can repeat that proof

here almost till the end. The only difference is that in proving (3.17) we can not

use Kolmogorov’s inequality (since our random variables Xn are not independent), but

instead we proceed as at the end of the proof of Theorem 2.15 (so we use the arguments

that were used in the proof of relation (2.14)). Therefore we conclude that Vn
d−→ V0 as

n →∞, in D[0, 1] endowed with the J1 topology.

Remark 3.8. Since the J1 convergence implies the M1 convergence, it holds that the

process Vn, under the same conditions as in Theorem 3.7, converges in distribution to

V0 as n →∞, in D[0, 1] endowed with the M1 topology.

3.3 Functional limit theorem with different partial

sum process

As stated in Remark 2.20, we can not replace the M1 topology in Theorem 2.15 by the

J1 topology. But if we alter the definition of the partial sum process in an appropriate
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way, we shall be able to recover the J1 convergence for certain mixing sequences.

Let (Xn) be a strictly stationary sequence of regularly varying random variables

with index α ∈ (0, 2), and let (an) be a sequence of positive real numbers such that

nP(|X1| > an) → 1 as n →∞. Define

ν(x,∞) = c+x−α and ν(−∞,−x) = c−x−α, x > 0,

for some c+, c− > 0. These relations determine a Lévy measure ν which can then be

written as

ν(dx) =
(
c+αx−α−11(0,∞)(x) + c−α(−x)−α−11(−∞,0)(x)

)
dx. (3.22)

Let

Sm =
m∑

k=1

Xk, m ∈ N.

In the sequel we will need that for every x > 0 the following large deviation relations

knP(Srn > xan) → ν(x,∞),

knP(Srn < −xan) → ν(−∞,−x),
(3.23)

as n → ∞, hold. Here (rn) is a sequence of positive integers such that rn → ∞ and

rn/n → 0 as n →∞, and kn = bn/rnc.

Remark 3.9. Some sufficient conditions for relations in (3.23) to hold are given in

Bartkiewicz et al. [6] and Davis and Hsing [24]. We list here the conditions from [6].

1. The process (Xn) is regularly varying with index α ∈ (0, 2).

2. For every x ∈ R, as n →∞,

∣∣ϕn(x)− (ϕnrn(x))kn
∣∣ → 0,

where ϕnj(x) = Eeixa−1
n Sj , j = 1, 2, . . ., and ϕn(x) = ϕnn(x).
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3. For every x ∈ R,

lim
d→∞

lim sup
n→∞

n

rn

rn∑

j=d+1

E
∣∣xa−1

n (Sj − Sd) · xa−1
n X1

∣∣ = 0,

where for an arbitrary random variable Z we put Z = (Z ∧ 2) ∨ (−2).

4. Assume the limits

lim
n→∞

n P(Sd > an) = b+(d) and lim
n→∞

n P(Sd 6 −an) = b−(d), d ∈ N,

lim
d→∞

(b+(d)− b+(d− 1)) = c+ and lim
d→∞

(b−(d)− b−(d− 1)) = c−

exists.

5. For α > 1 assume EX1 = 0 and for α = 1,

lim
d→∞

lim sup
n→∞

n
∣∣E(sin(a−1

n Sd))
∣∣ = 0.

If these conditions hold then the relations in (3.23) hold (see relation (3.6) in [6]).

By Lemma 6.1 in Resnick [60], (3.23) is equivalent to

knP

(
Srn

an

∈ ·
)

v−→ ν( · ), as n →∞. (3.24)

In the sequel we assume relation (3.24) holds. Define

Sk, n
rn

= X(k−1)rn+1 + . . . + Xkrn , k, n ∈ N

(note S1, n
rn

= Srn).

Lemma 3.10. Let α ∈ (0, 1) and assume relation (3.24) holds. Then for any u > 0,

lim
n→∞

knE

( |Srn |
an

1{ |Srn |
an
6u

}
)

=

∫

|x|6u

|x| ν(dx). (3.25)
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Proof. Fix u > 0. Define

νn( · ) = knP(a−1
n Srn ∈ · ), n ∈ N,

and

fδ(x) = |x|1B(δ, u)(x), x ∈ E, δ ∈ (0, u),

where B(δ, u) = {x ∈ E : δ < |x| 6 u} . By relation (3.24), νn
v−→ ν as n → ∞, and

this with ν(∂B(δ, u)) = 0 yield
∫

E
fδ(x) νn(dx) →

∫

E
fδ(x) ν(dx), (3.26)

as n →∞ (see Proposition 1.2). Define

f(x) = |x|1B(u)(x), x ∈ E,

where B(r) = {x ∈ E : |x| 6 r}. It follows
∣∣∣∣
∫

E
f(x) νn(dx)−

∫

E
f(x) ν(dx)

∣∣∣∣ ≤
∣∣∣∣
∫

B(δ)

f(x) νn(dx)−
∫

B(δ)

f(x) ν(dx)

∣∣∣∣

+

∣∣∣∣
∫

B(δ)c

f(x) νn(dx)−
∫

B(δ)c

f(x) ν(dx)

∣∣∣∣

≤
∣∣∣∣
∫

B(δ)

f(x) νn(dx)

∣∣∣∣ +

∣∣∣∣
∫

B(δ)

f(x) ν(dx)

∣∣∣∣

+

∣∣∣∣
∫

B(δ, u)

f(x) νn(dx)−
∫

B(δ, u)

f(x) ν(dx)

∣∣∣∣, (3.27)

for any δ ∈ (0, u). For the first term on the right hand side of (3.27) we have
∣∣∣∣
∫

B(δ)

f(x) νn(dx)

∣∣∣∣ =

∫

E
|x|1B(δ)(x) νn(dx) = kn

∫ ∣∣∣∣
Srn

an

∣∣∣∣1{|Srn |6δan} dP

= knE

[ |Srn|
an

1{|Srn |6δan}

]
= knE

[ |Srn|
an

1{|Srn |6δan}︸ ︷︷ ︸
6 1

1{∩rn
j=1{|Xj |6δan}}

]

+ knE

[ |Srn |
an

1{|Srn |6δan}
︸ ︷︷ ︸

6 δ

1{∪rn
j=1{|Xj |>δan}}

]
,
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which implies it is bounded above by

6 knE

[∑rn

j=1 |Xj|
an

1{∩rn
j=1{|Xj |6δan}}

]
+ knδP

( rn⋃
j=1

{|Xj| > δan}
)

6 kn

rn∑
j=1

E

[ |Xj|
an

1{|Xj |6δan}

]
+ knδ

rn∑
j=1

P(|Xj| > δan)

= knrnE

[ |X1|
an

1{|X1|6δan}

]
+ knrnδP(|X1| > δan)

= δ · knrn

n
· nP(|X1| > δan) ·

[
E[|X1|1{|X1|6δan}]
δanP(|X1| > δan)

+ 1

]
. (3.28)

From the definition of sequences (rn) and (kn) it follows

knrn

n
→ 1, as n →∞.

Since X1 is a regularly varying random variable with index α, it follows immediately

nP(|X1| > δan) → δ−α, as n →∞.

By Theorem 1.12 it holds that

lim
n→∞

E[|X1|1{|X1|6δan}]
δanP(|X1| > δan)

=
α

1− α
.

Now from (3.28) we get

lim sup
n→∞

∣∣∣∣
∫

B(δ)

f(x) νn(dx)

∣∣∣∣ 6 δ1−α

(
α

1− α
+ 1

)
,

and therefore, since α ∈ (0, 1),

lim
δ→0

lim sup
n→∞

∣∣∣∣
∫

B(δ)

f(x) νn(dx)

∣∣∣∣ = 0. (3.29)

By the representation of the measure ν in (3.22) we get

∫

|x|6δ

|x| ν(dx) = (c− + c+)
α

1− α
δ1−α.
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Hence for the second term on the right hand side of (3.27) we have

∣∣∣∣
∫

B(δ)

f(x) ν(dx)

∣∣∣∣ =

∫

|x|6δ

|x| ν(dx) → 0, as δ → 0. (3.30)

From (3.26) we get for the third term on the right hand side of (3.27)

∣∣∣∣
∫

B(δ, u)

f(x) νn(dx)−
∫

B(δ, u)

f(x) ν(dx)

∣∣∣∣ =

∣∣∣∣
∫

E
fδ(x) νn(dx)−

∫

E
fδ(x) ν(dx)

∣∣∣∣

→ 0, as n →∞. (3.31)

Now from (3.27) using (3.29), (3.30) and (3.31) we obtain

lim
δ→0

lim sup
n→∞

∣∣∣∣
∫

E
f(x) νn(dx)−

∫

E
f(x) ν(dx)

∣∣∣∣ = 0.

From this immediately follows

∫

E
f(x) νn(dx) →

∫

E
f(x) ν(dx), as n →∞,

i.e.

knE

( |Srn |
an

1{ |Srn |
an
6u

}
)
→

∫

|x|6u

|x| ν(dx), as n →∞.

The mixing condition appropriate for the main result in this section is given in the

following definition.

Definition 3.11. We say a strictly stationary sequence of random variables (Xn)

satisfies the mixing condition A′′(an) if there exists a sequence of positive integers

(rn) such that rn →∞ and rn/n → 0 as n →∞, and such that for every f ∈ C+
K(E),

denoting kn = bn/rnc, as n →∞,

E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
−

(
E exp(−f(a−1

n Srn))

)kn

→ 0. (3.32)
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The mixing condition A′′(an) holds if the process (Xn) is strongly mixing with

geometric rate (see Proposition 3.14 and Remark 3.15 below). In case α ∈ [1, 2), we

will need to assume a condition similar to Condition 2.14.

Condition 3.12. There exists a sequence of positive integers (rn) with rn → ∞ and

kn = bn/rnc → ∞ as n →∞, such that for all δ > 0,

lim
u↓0

lim sup
n→∞

P

[
max

16j6kn

∣∣∣∣
j∑

k=1

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
))∣∣∣∣ > δ

]
= 0.

Theorem 3.13. Let (Xn) be a strictly stationary sequence of regularly varying random

variables with index α ∈ (0, 2), and let (an) be a sequence of positive real numbers such

that nP(|X1| > an) → 1 as n →∞. Suppose there exists a sequence of positive integers

(rn) such that, as n →∞, rn →∞, kn = bn/rnc → ∞ and

knP

(
Srn

an

∈ ·
)

v−→ ν(·). (3.33)

Suppose that the mixing condition A′′(an) holds. If α ∈ [1, 2), also suppose that Con-

dition 3.12 holds. Then for a stochastic process defined by

Wn(t) =

bkntc∑

k=1

Sk, n
rn

an

− bkntcE
(

Srn

an

1{ |Srn |
an
61

}
)

, t ∈ [0, 1],

it holds that

Wn
d−→ W0, n →∞,

in D[0, 1] endowed with the J1 topology, where W0( · ) is an α–stable Lévy process with

characteristic triple (0, ν, 0).

Proof. Let, for any n ∈ N, (Zn,k)k be a sequence of i.i.d. random variables such that

Zn,1
d
= Srn . By relation (3.33) we have

knP

(
Zn,1

an

∈ ·
)

v−→ ν(·), as n →∞. (3.34)
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Proposition 1.27 then implies, as n →∞,

ξ̃n :=
kn∑

k=1

δa−1
n Zn,k

d−→ PRM(ν) (3.35)

on E. For any n ∈ N define a point process

ξn =
kn∑

k=1

δa−1
n Sk, n

rn
.

For any f ∈ C+
K(E) we have

Ψξn(f)−Ψeξn
(f) = E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
−

(
E exp(−f(a−1

n Z1, n))

)kn

= E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
−

(
E exp(−f(a−1

n Srn))

)kn

.

Hence, the mixing condition A′′(an) implies Ψξn(f)−Ψeξn
(f) → 0 as n →∞. Relation

(3.35) and Theorem 1.23 then imply, as n →∞,

kn∑

k=1

δa−1
n Sk, n

rn

d−→ PRM(ν).

This corresponds to relation (3.2) in the proof of Proposition 3.3. Now using the same

technique as in that proof we obtain that, as n →∞,

kn∑

k=1

δ(k/kn, a−1
n Sk, n

rn )

d−→ PRM(LEB× ν) (3.36)

on [0, 1]×E. This relation corresponds to relation (3.10) in the proof of Theorem 3.5.

We can repeat that proof in our case (we only need to put kn instead of n in some

places) until relation (3.16). It remains to prove

lim
u↓0

lim sup
n→∞

P

(
sup

t∈[0,1]

|W (u)
n (t)−Wn(t)| > δ

)
= 0,

for every δ > 0, where

W (u)
n ( · ) :=

bkn·c∑

k=1

Sk, n
rn

an

1{ |Sk, n
rn |
an

>u
} − bkn · cE

(
Srn

an

1{
u<

|Srn |
an
61

}
)

.
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We have

P

(
sup

t∈[0,1]

|W (u)
n (t)−Wn(t)| > δ

)

= P

[
max

16j6kn

∣∣∣∣
j∑

k=1

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
))∣∣∣∣ > δ

]
. (3.37)

For α ∈ [1, 2) this relation is simply Condition 3.12. Therefore it remains to show

(3.37) for the case when α ∈ (0, 1). Hence assume α ∈ (0, 1). For arbitrary (and fixed)

δ > 0 define

I(u, n) = P

[
max

16j6kn

∣∣∣∣
j∑

k=1

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
))∣∣∣∣ > δ

]
.

Using stationarity and Chebyshev’s inequality we get the bound

I(u, n) 6 P

[
max

16j6kn

j∑

k=1

∣∣∣∣
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
)∣∣∣∣ > δ

]

= P

[ kn∑

k=1

∣∣∣∣
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
)∣∣∣∣ > δ

]

6 δ−1E

[ kn∑

k=1

∣∣∣∣
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E

(
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
)∣∣∣∣

]

6 2δ−1

kn∑

k=1

E

( |Sk, n
rn
|

an

1{ |Sk, n
rn |
an
6u

}
)

= 2δ−1knE

( |Srn|
an

1{ |Srn |
an
6u

}
)

.

Using Lemma 3.10 we obtain that

lim
n→∞

knE

( |Srn |
an

1{ |Srn |
an
6u

}
)

=

∫

|x|6u

|x| ν(dx)

= (c− + c+)
α

1− α
u1−α

→ 0, as u → 0.
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Hence

lim
u↓0

lim sup
n→∞

I(u, n) = 0,

which completes the proof, with the note that the α–stability of the process W0( · )
follows from Theorem 14.3 in Sato [63] and the representation of the measure ν in

(3.22).

At the end of this section we give some sufficient conditions for the mixing condition

A′′(an) and Condition 3.12 to hold.

Proposition 3.14. Suppose (Xn) is a strictly stationary sequence of regularly varying

random variables with index α ∈ (0, 2), and (an) a sequence of positive real numbers

such that nP(|X1| > an) → 1 as n → ∞. Assume relation (3.33) holds for some

sequence of positive integers (rn) such that rn →∞ and kn = bn/rnc → ∞ as n →∞,

and kn = o(nt) for some 0 < t < 1. If the sequence (Xn) is strongly mixing with

knαln+1 → 0, as n →∞, (3.38)

where (αn) is the sequence of α–mixing coefficients of (Xn) and (ln) is a sequence of

positive integers such that ln → ∞ as n → ∞ and ln = o(nq) for some 0 < q <

min{1/α, (1− t)/(1 + α)}, then the mixing condition A′′(an) holds.

Proof. Let n be large enough such that ln < rn (note that for large n it holds that

ln < n1−t < rn). We break X1, X2, . . . into blocks of rn consecutive random variables.

The last ln variables in each block will be dropped. Then we shall show that doing so,

the new blocks will be almost independent (as n → ∞) and this will imply relation

(3.32) for the new blocks. The error which occurs by cutting of the ends of the original

blocks will be small, and this will imply condition (3.32) for the original blocks also.

Take an arbitrary f ∈ C+
K(E). Since its support is bounded away from 0, there

exists some r > 0 such that f(x) = 0 for |x| 6 r, and since f is bounded, there exists
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some M > 0 such that |f(x)| < M for all x ∈ E. For all k, n ∈ N define

Sk, n
rn, ln

= Xkrn−ln+1 + . . . + Xkrn .

Sk, n
rn, ln

is the sum of the last ln random variables in the k-th block. By stationarity we

have

Sk, n
rn

− Sk, n
rn, ln

d
= S1, n

rn
− S1, n

rn, ln
= Srn−ln .

This and the following inequality

|Egh− EgEh| 6 4C1C2αm,

for a F j
−∞ measurable function g and a F∞

j+m measurable function h such that |g| 6 C1

and |h| 6 C2 (see Lemma 1.2.1 in Lin and Lu [47]), applied kn times, give

∣∣∣∣E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
− a−1

n Sk, n
rn, ln

)

)
−

(
E exp(−f(a−1

n Srn−ln))

)kn
∣∣∣∣

6 4knαln+1. (3.39)

Then

∣∣∣∣E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
−

(
E exp(−f(a−1

n Srn))

)kn
∣∣∣∣

6
∣∣∣∣E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
− E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
− a−1

n Sk, n
rn, ln

)

)∣∣∣∣

+

∣∣∣∣E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
− a−1

n Sk, n
rn, ln

)

)
−

(
E exp(−f(a−1

n Srn−ln))

)kn
∣∣∣∣

+

∣∣∣∣
(

E exp(−f(a−1
n Srn−ln))

)kn

−
(

E exp(−f(a−1
n Srn))

)kn
∣∣∣∣

=: I1(n) + I2(n) + I3(n). (3.40)
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By Lemma 4.3 in Durrett [29] and stationarity we have

I1(n) 6 E

( kn∑

k=1

|e−f(a−1
n Sk, n

rn ) − e−f(a−1
n Sk, n

rn −a−1
n Sk, n

rn, ln
)|
)

= knE
∣∣e−f(a−1

n Srn ) − e−f(a−1
n Srn−ln )

∣∣

= knE
∣∣e−f(a−1

n Srn )(1− ef(a−1
n Srn)−f(a−1

n Srn−ln ))
∣∣

6 knE
∣∣1− ef(a−1

n Srn)−f(a−1
n Srn−ln)

∣∣.

It can be shown that for any t > 0 there exists a constant C = C(t) > 0 such that

|1− e−x| 6 C|x|, for all |x| < t.

Since for all x, y ∈ E, |f(x)− f(y)| < 2M , there exists a positive constant C such that

I1(n) 6 CknE|f(a−1
n Srn)− f(a−1

n Srn−ln)|. (3.41)

Further, since f(x) = 0 for |x| 6 r, we have

E|f(a−1
n Srn)− f(a−1

n Srn−ln)|

= E
[|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]

+ E
[
f(a−1

n Srn−ln)1{a−1
n |Srn−ln |>r/2}1{a−1

n |Srn |6r/4}
]

+ E
[
f(a−1

n Srn)1{a−1
n |Srn−ln |6r/2}1{a−1

n |Srn |>r}
]

6 E
[|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]

+ MP

( |Sln |
an

>
r

4

)
+ MP

( |Sln|
an

>
r

2

)
. (3.42)

Since the set S = {x ∈ E : |x| > r/4} is relatively compact and any continuous

function on a compact set is uniformly continuous, it follows that for any ε > 0 there

exists δ > 0 such that |f(x)− f(y)| < ε for all x, y ∈ S such that ρ(x, y) 6 δ, where ρ
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is the metric on E defined in (1.1). If |x| > r/2, |y| > r/4 and sign(x) = sign(y), then

x, y ∈ S and

ρ(x, y) =
||x| − |y||
|xy| 6 8

r2
|x− y|. (3.43)

Define gn(x, y) = |f(a−1
n x)− f(a−1

n y)| and let ε > 0 be arbitrary. Then

E
[|f(a−1

n Srn)− f(a−1
n Srn−ln)|1{a−1

n |Srn−ln |>r/2}1{a−1
n |Srn |>r/4}

]

= E
[
gn(Srn , Srn−ln)1{a−1

n |Srn−ln |>r/2, a−1
n |Srn |>r/4}1{sign(Srn−ln ) 6=sign(Srn )}

]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2, a−1
n Srn>r/4}1{a−1

n |Srn−Srn−ln |6δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2, a−1
n Srn<−r/4}1{a−1

n |Srn−Srn−ln |6δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2, a−1
n Srn>r/4}1{a−1

n |Srn−Srn−ln |>δr2/8}
]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2, a−1
n Srn<−r/4}1{a−1

n |Srn−Srn−ln |>δr2/8}
]
.

By stationarity and relation (3.43) this is bounded above by

6 2MP

( |Srn − Srn−ln|
an

>
3r

4

)

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln>r/2}1{a−1
n Srn>r/4}1{ρ(a−1

n Srn , a−1
n Srn−ln )6δ}

]

+ E
[
gn(Srn , Srn−ln)1{a−1

n Srn−ln<−r/2}1{a−1
n Srn<−r/4}1{ρ(a−1

n Srn , a−1
n Srn−ln )6δ}

]

+ 4MP

( |Srn − Srn−ln|
an

>
δr2

8

)

6 2MP

( |Sln |
an

>
3r

4

)
+ εP

( |Srn|
an

>
r

4

)
+ 4MP

( |Sln |
an

>
δr2

8

)
.

Therefore, from (3.41) and (3.42) we obtain

I1(n) 6 8MCknP

( |Sln |
an

> γ

)
+ εCknP

( |Srn|
an

>
r

4

)
, (3.44)

where γ = min{r/4, δr2/8} > 0.
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Since X1 is regularly varying with index α ∈ (0, 2), for any x > 0

P(|X1| > x) = x−αL(x),

where L is a slowly varying function (see Proposition 1.8). It also holds

an = n1/αL′(n),

where L′ is a slowly varying function (see Remark 1.9). Therefore, taking an arbitrary

0 < s < min{α, α(1− t− q − αq)/(1− αq)}, we have

knP

( |Sln |
an

> γ

)
6 knlnP(|X1| > γan/ln) = knln

(
γan

ln

)−α

L

(
γan

ln

)

= knln

(
γan

ln

)s−α

· cn,

where

cn =

(
γan

ln

)−s

L

(
γan

ln

)
.

Since an/ln →∞ as n →∞, by Proposition 1.3.6 in Bingham et al. [13] we have that

cn → 0 as n →∞. Further

knln

(
γan

ln

)s−α

=
kn(ln)1+α−s

γα−saα−s
n

=

(
ln
nq

)1+α−s

· kn

nt
· nt(nq)1+α−s

γα−sn(α−s)/α(L′(n))α−s

6
(

ln
nq

)1+α−s

· kn

nt
· 1

γα−snp(L′(n))α−s

where p = (α− s)/α− t− (1 + α− s)q. It can easily be checked that p > 0. This and

the fact that ln = o(nq) and kn = o(nt), by Proposition 1.3.6 in Bingham et al. [13],

imply that knln(γan/ln)s−α → 0 as n →∞. Hence

knP

( |Sln |
an

> γ

)
→ 0, as n →∞. (3.45)

From relation (3.33) we obtain that, as n →∞,

knP

( |Srn|
an

>
r

4

)
→ ν({x ∈ E : |x| > r/4}) =: A < ∞. (3.46)
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Thus from relations (3.44), (3.45) and (3.46) we obtain

lim sup
n→∞

I1(n) 6 ACε,

and since ε > 0 is arbitrary, we have

lim
n→∞

I1(n) = 0. (3.47)

From (3.39) and the assumption that knαln+1 → 0 as n →∞, it follows immediately

lim
n→∞

I2(n) = 0. (3.48)

Using again Lemma 4.3 in Durrett [29] it follows

I3(n) 6 knE
∣∣e−f(a−1

n Srn) − e−f(a−1
n Srn−ln )

∣∣.

Repeating the same procedure as for I1(n) we get

lim
n→∞

I3(n) = 0. (3.49)

Taking into account relations (3.47), (3.48) and (3.49), from (3.40) we obtain that, as

n →∞,

E exp

(
−

kn∑

k=1

f(a−1
n Sk, n

rn
)

)
−

(
E exp(−f(a−1

n Srn))

)kn

→ 0,

and this concludes the proof.

Remark 3.15. Relation (3.38) holds if (Xn) is strongly mixing with geometric rate,

i.e. αn 6 Cρn for some ρ ∈ (0, 1) and C > 0, and ln ∼ nr for some r > 0, i.e. ln/n
r → 1

as n → ∞. Therefore if the sequence (Xn) is strongly mixing with geometric rate,

then the mixing condition A′′(an) holds.
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Proposition 3.16. Suppose (Xn) is a strictly stationary sequence of symmetric and

regularly varying random variables with index of regular variation α ∈ [1, 2), and (an)

a sequence of positive real numbers such that nP(|X1| > an) → 1 as n → ∞. If the

sequence (ρn) of ρ–mixing coefficients of (Xn) decreases to zero as n →∞ and

∑
j>0

ρb2j/3c < ∞, (3.50)

then Condition 3.12 holds.

Proof. Let n ∈ N and u > 0 be arbitrary. Define

Zk = Zk(u, n) =
Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

} − E
(Sk, n

rn

an

1{ |Sk, n
rn |
an
6u

}
)
, k ∈ N.

Take an arbitrary δ > 0 and as in the proof of Theorem 3.13 define

I(u, n) = P

[
max

16j6kn

∣∣∣∣
j∑

k=1

Zk

∣∣∣ > δ
]
.

Corollary 2.1 in Peligrad [54] then implies

I(u, n) 6 δ−2C exp
(
8

blog2 knc∑
j=0

ρ̃b2j/3c
)

knE(Z2
1),

where (ρ̃k) is the ρ-mixing sequence of (Zk) and C is some positive constant (here we

put log2 0 := 0). Now a little calculations show that for any k ∈ N,

ρ̃k 6 ρ(k−1)rn+1,

and since the sequence (ρk) is non-increasing, we have ρ̃k 6 ρk. From this and assump-

tion (3.50) we obtain that

I(u, n) 6 CLδ−2 knE(Z2
1), (3.51)
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for some positive constant L. Further we have

E(Z2
1) 6 E

( |Srn |2
a2

n

1{ |Srn |
an
6u

})
= E

( |Srn |2
a2

n

1{ |Srn |
an
6u

}1{∩rn
i=1{|Xi|6uan}}

)

+ E
( |Srn |2

a2
n

1{ |Srn |
an
6u

}1{∪rn
i=1{|Xi|>uan}}

)

6 E
(∣∣∣

rn∑
i=1

Xi

an

1{ |Xi|
an
6u

}∣∣∣
2)

+ u2P
( rn⋃

i=1

{|Xi| > uan}
)
. (3.52)

Since the random variables Xi are symmetric, by Theorem 2.1 in Peligrad [54] we have

E
(∣∣∣

rn∑
i=1

Xi

an

1{ |Xi|
an
6u

}∣∣∣
2)

6 C exp
(
8

blog2 rnc∑
j=0

ρb2j/3c(n, u)
)

rnE
(X2

1

a2
n

1{ |X1|
an
6u

})
, (3.53)

for all n ∈ N, where (ρj(n, u))j is the sequence of ρ-mixing coefficients of
(Xj

an

1{ |Xj |
an
6u

})
j
.

Since the function f = fn,u : R→ R defined by

f(x) =
x

an

1{ |x|
an
6u

}

is measurable, it follows that

σ
(Xj

an

1{ |Xj |
an
6u

})
⊆ σ(Xj)

(see Theorem 4 in Chow and Teicher [20]). From this we immediately obtain ρj(n, u) 6

ρj, for all j, n ∈ N and u > 0. Thus from (3.53), by a new application of assumption

(3.50), we get

E
(∣∣∣

rn∑
i=1

Xi

an

1{ |Xi|
an
6u

}∣∣∣
2)

6 CL rnE
(X2

1

a2
n

1{ |X1|
an
6u

})
. (3.54)

Now relations (3.52) and (3.54) imply

knE(Z2
1) 6 CL knrnE

(X2
1

a2
n

1{ |X1|
an
6u

})
+ u2knrnP (|X1| > uan)

= u2 · knrn

n
· nP(|X1| > uan) ·

[
CL

E[X2
11{|X1|6uan}]

u2a2
nP (|X1| > uan)

+ 1

]
.
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From this, using the fact that knrn/n → 1 as n →∞, regular variation property of X1

and Theorem 1.12, we obtain

lim sup
n→∞

knE(Z2
1) 6 u2−α

( CLα

2− α
+ 1

)
.

Letting u ↓ 0, it follows that limu↓0 lim supn→∞ knE(Z2
1) = 0. Therefore, from (3.51),

we get

lim
u↓0

lim sup
n→∞

I(u, n) = 0,

and Condition 3.12 holds.



Chapter 4

Applications to different time series
models

In this chapter we analyze some time series models that are often used in applications.

These models include MA, GARCH, ARMA and stochastic volatility models. For the

first three of them, we will give sufficient conditions for Theorem 2.15 to hold. There-

fore for these models we obtain functional limit theorems with the M1 convergence.

For the stochastic volatility model we are able to obtain a stronger result, since under

suitable assumptions, the dependence condition D′ will hold. Thus by an applica-

tion of Theorem 3.7, we will get the J1 convergence in the corresponding functional

limit theorem. At the end of each section we give a proposition which contains the

corresponding functional limit theorem for the model in consideration.

4.1 MA models

Consider the finite order MA (moving average) process defined by

Xn =
m∑

i=0

ciZn−i, n ∈ Z, (4.1)

where (Zi)i∈Z is an i.i.d. sequence of regularly varying random variables with index

α ∈ (0, 2), m ∈ N, c0, . . . , cm are nonnegative constants and at least c0 and cm are not

113
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equal to 0. Take a sequence of positive real numbers (an) such that

nP(|Z1| > an) → 1 as n →∞. (4.2)

Clearly the sequence (Xn) is strictly stationary and m-dependent, therefore also strongly

mixing, so the mixing condition A′(an) holds by Proposition 1.34.

Let k ∈ N be arbitrary. For every i = 0, 1, . . . ,m define matrices Ak,i of dimension

k × k and k–dimensional random vectors Zk,i by

Ak,i =




ci 0 0 . . . 0
0 ci 0 . . . 0
0 0 ci . . . 0
...

...
...

. . .
...

0 0 0 . . . ci




Zk,i = (Z1−i, . . . , Zk−i)
′.

Let X(k) = (X1, . . . , Xk)
′. Then

X(k) =
m∑

i=0

Ak,iZk,i.

Since the components of the random vector Zk,i are i.i.d. and regularly varying with

index α, a multidimensional version of Proposition 1.11 implies that the vector Zk,i is

regularly varying with index α. Therefore, by Definition 1.5, there exists a nonzero

Radon measure µk,i on (Ek,B(Ek)) with µk,i(R
k \ Rk) = 0 such that, as n →∞,

nP
(Zk,i

an

∈ ·
)
→v µk,i(·).

Let ‖x‖ denote the Euclidian norm of a vector x ∈ Rk, and ‖A‖ the operator norm of

a k × k– matrix A, i.e. ‖A‖ = sup‖x‖=1 ‖Ax‖. Since

m∑
i=0

‖Ak,i‖δ =
m∑

i=0

|ci|δ < ∞,
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for every δ > 0, by Theorem 3.1 and Remark 3.2 in Hult and Samorodnitsky [38] we

have that, as n →∞,

P(a−1
n X(k) ∈ ·)

P(‖Zk,0‖ > an)

v−→ µ̃k(·) :=
m∑

i=0

µk,i ◦A−1
k,i (·). (4.3)

Since the random variables Z2
1 , . . . , Z

2
k are i.i.d. and regularly varying (with index α/2),

we have

P(‖Zk,0‖ > an) = P(Z2
1 + . . . + Z2

k > a2
n) ∼ kP(Z2

1 > a2
n) = kP(|Z1| > an)

(see Feller [32, p. 271] or Lemma 1.3.1 in Embrechts et al. [30]). Hence from relation

(4.2) we obtain that, as n →∞,

nP(‖Zk,0‖ > an) → k.

Therefore from (4.3) we obtain that, as n →∞,

nP(a−1
n X(k) ∈ ·) v−→ k µ̃k(·). (4.4)

If we show the measure µ̃k is nonzero, then the random vector X(k) will be regularly

varying with index α. Since the measure µk,m is nonzero, there exists a set B ∈ B(Ek)

such that µk,m(B) > 0. But then, by Theorem 1.6 (ii) and the fact that cm > 0, we

have

µk,m ◦A−1
k,m(B) = µk,m({x : Ak,mx ∈ B}) = µk,m(c−1

m B) = cα
m µk,m(B) > 0.

Therefore µ̃k(B) > 0, and hence for any k ∈ N the random vector X(k) = (X1, . . . , Xk)

is regularly varying with index α (note that this trivially implies that X1 is regularly

varying with the same index). From this we conclude that the process (Xn) is regularly

varying with index α (see Remark 1.14). A different proof of the regular variation

property for the process (Xn) appeared earlier in an unpublished work of Basrak and

Segers.
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In the sequel we assume (without loss of generality) that
∑m

i=0 cα
i = 1. Then from

(4.2) and Lemma 1.2 in Cline [21], we have that

nP(|X1| > an) → 1, as n →∞.

Let (rn) be an arbitrary sequence of positive integers such that rn → ∞ and

rn/n → 0 as n → ∞. Choose k and n such that rn > k > m. Then taking into

account stationarity and m-dependency of (Xn) we have, for an arbitrary t > 0,

P
(

max
k6|i|6rn

|Xi| > tan

∣∣∣ |X0| > tan

)
= P

(
max

k6|i|6rn

|Xi| > tan

)

6 2(rn − k + 1)P(|X1| > tan) 6 2rn

n
· nP(|X1| > tan).

Since X1 is regularly varying, nP(|X1| > tan) → t−α as n → ∞. This with the fact

that rn/n → 0 as n →∞ yields that

lim sup
n→∞

P
(

max
k6|i|6rn

|Xi| > tan

∣∣∣ |X0| > tan

)
= 0,

and therefore the anti-clustering condition AC(an) holds.

The tail process (Yn) of the process (Xn) can be found by direct calculation. First,

recalling the notions and result from Section 1.3, it holds that Y0 = |Y0|Θ0 where

|Y0| and Θ0 = sign(Y0) are independent with P (|Y0| > y) = y−α for y > 1 and

P(Θ0 = 1) = p, P(Θ0 = −1) = q = 1− p. Next, let K denote a random variable with

values in the set {0, . . . , m}, independent of Y0, and such that P(K = j) = cα
j . To

simplify notation, put ci := 0 for i 6∈ {0, . . . , m}. Then

Yn =
cn+K

cK

Y0, Θn =
cn+K

cK

Θ0, n ∈ Z, (4.5)

represents the tail process and spectral process of (Xn), respectively.

For simplicity, we will prove (4.5) only for n ∈ {1, . . . , m} and in the case when

ci > 0 for all i = 0, 1, . . . , m (the other cases can be treated similarly, and therefore
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are omitted). Let y > 0 be arbitrary. Firstly, we will calculate

lim
x→∞

P(x−1Xn > y
∣∣ |X0| > x) = lim

x→∞
P(Xn > xy, |X0| > x)

P(|X0| > x)
, (4.6)

and show that this expression equals P((cn+K/cK) Y0 > y). For every l ∈ {−m, . . . , n}
define the set A(l) = {−m, . . . , n} \ {l}. Then we have

P(Xn > xy, |X0| > x) = P
( n⋂

l=−m

{Xn > xy, |X0| > x, |Zl| 6 x2/3}
)

+ P
( n⋃

l=−m

{Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l)}
)

+ P
( ⋃

−m6l<s6n

{Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| > x2/3}
)

=: I1(x) + I2(x) + I3(x). (4.7)

Since |Z−i| 6 x2/3 for i = 0, . . . , m implies

|X0| 6
m∑

i=0

ci|Z−i| 6 x2/3

m∑
i=0

ci 6 x, for large x,

it follows that I1(x) = 0 for large x, which obviously implies

lim
x→∞

I1(x)

P(|X0| > x)
= 0. (4.8)

The fact that the random variables Zi are i.i.d. gives

I3(x) 6
∑

−m6l<s6n

P(|Zl| > x2/3, |Zs| > x2/3) =

(
m + n + 1

2

)
[P(|Z1| > x2/3)]2.

Therefore, denoting M =
(

m+n+1
2

)
and using the fact that P(|X0| > x) = x−αL(x) for

some slowly varying function L (see Proposition 1.8), we have

I3(x)

P(|X0| > x)
6 M

[
P(|Z1| > x2/3)

P(|X0| > x2/3)

]2

· [P(|X0| > x2/3)]2

P(|X0| > x)

= M

[
P(|Z1| > x2/3)

P(|X0| > x2/3)

]2

· [x−α/24L(x2/3)]2

xα/4L(x)
.
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Since by Lemma 1.2 in Cline [21],

P(|Z1| > x2/3)

P(|X0| > x2/3)
→ 1∑m

i=0 cα
i

= 1, as x →∞,

and by Proposition 1.3.6 in Bingham et al. [13], x−α/24L(x2/3) → 0 and xα/4L(x) →∞
as n →∞, we immediately get

lim
x→∞

I3(x)

P(|X0| > x)
= 0. (4.9)

The term I2(x) can be written in the following form

I2(x) =
0∑

l=−m

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l))

+
n∑

l=1

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l))

In a same way as for I1(x), we obtain that, for every l = 1, . . . , n,

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l)) = 0

for large x. Therefore, for large x,

I2(x) =
0∑

l=−m

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l)). (4.10)

Note that for every l = −m, . . . , n−m− 1,

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l)) = 0 (4.11)

for large x, since |Zs| 6 x2/3 for all s ∈ A(l) implies

|Xn| 6
m∑

i=0

ci|Zn−i| 6 x2/3

m∑
i=0

ci 6 xy, for large x.

Now take an arbitrary l ∈ {n − m, . . . , 0} and put B(l) = {0 . . . , m} \ {−l} and

Cl =
∑

i∈B(l) ci =
∑m

i=0 ci − c−l. Then, since |Zs| 6 x2/3 for s ∈ A(l), |X0| > x and

Xn > xy imply

x < |X0| 6 c−l|Zl|+
∑

i∈B(l)

ci|Z−i| 6 c−l|Zl|+ x2/3Cl,
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i.e. c−l|Zl| > x− x2/3Cl,

xy < |Xn| 6 cn−l|Zl|+
∑

i∈B(l−n)

ci|Zn−i| 6 cn−l|Zl|+ x2/3Cl−n,

i.e. cn−l|Zl| > xy − x2/3Cl−n, and

xy < Xn 6 cn−lZl + x2/3Cl−n,

i.e. Zl > (xy − x2/3Cl−n)/cn−l > 0 for large x, we have

P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l))

6 P(Zl > 0, c−l|Zl| > x− x2/3Cl, cn−l|Zl| > xy − x2/3Cl−n) (4.12)

for large x. Therefore, from (4.10), (4.11) and (4.12) we obtain that, for large x,

I2(x) 6
0∑

l=n−m

P(Zl > 0, c−l|Zl| > x− x2/3Cl, cn−l|Zl| > xy − x2/3Cl−n).

Now take an arbitrary s ∈ (0, 1). Then for large x it holds that

x− x2/3Cl > sx and xy − x2/3Cl−n > sxy.

This implies

I2(x) 6
0∑

l=n−m

P(c−lZl > sx, cn−lZl > sxy)

=
0∑

l=n−m

P(Zl > sbn,l(y)x), for large x,

where bn,l(y) = max{1/c−l, y/cn−l}. Hence

lim sup
x→∞

I2(x)

P(|X0| > x)
6

0∑

l=n−m

lim sup
x→∞

P(Zl > sbn,l(y)x)

P(|X0| > x)

=
0∑

l=n−m

lim sup
x→∞

P(Zl > sbn,l(y)x)

P(|Zl| > sbn,l(y)x)
· P(|Zl| > sbn,l(y)x)

P(|X0| > sbn,l(y)x)
· P(|X0| > sbn,l(y)x)

P(|X0| > x)
.
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Since the spectral measure of X0 is equal to the law of Θ0 (recall this fact from Section

1.3), we have

lim
x→∞

P(X0 > x)

P(|X0| > x)
= p and lim

x→∞
P(X0 < −x)

P(|X0| > x)
= q.

Put

p′ = lim
x→∞

P(Z1 > x)

P(|Z1| > x)
and q′ = lim

x→∞
P(Z1 < −x)

P(|Z1| > x)
.

Then by Lemma A3.26 in Embrechts et al. [30] we have

lim
x→∞

P(X0 > x)

P(|Z1| > x)
= p′ and lim

x→∞
P(X0 < −x)

P(|Z1| > x)
= q′.

Therefore, using Lemma 1.2 in Cline [21], we obtain that

p′ = lim
x→∞

P(X0 > x)

P(|Z1| > x)
= lim

x→∞
P(X0 > x)

P(|X0| > x)
· P(|X0| > x)

P(|Z1| > x)

= p

m∑
i=0

cα
i = p.

Similarly q′ = q. This implies

lim
x→∞

P(Zl > sbn,l(y)x)

P(|Zl| > sbn,l(y)x)
= p.

Using again Lemma 1.2 in [21] we get

lim
x→∞

P(|Zl| > sbn,l(y)x)

P(|X0| > sbn,l(y)x)
= 1.

Further, since X0 is regularly varying with index α, it follows that

lim
x→∞

P(|X0| > sbn,l(y)x)

P(|X0| > x)
= (sbn,l(y))−α.

This all leads to

lim sup
x→∞

I2(x)

P(|X0| > x)
6 ps−α

0∑

l=n−m

(bn,l(y))−α.
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Since s ∈ (0, 1) was arbitrary, letting s → 1, we obtain that

lim sup
x→∞

I2(x)

P(|X0| > x)
6 p

0∑

l=n−m

(bn,l(y))−α. (4.13)

On the other hand, for an arbitrary l ∈ {n −m, . . . , 0}, since c−lZl > x + x2/3Cl,

cn−lZl > xy + x2/3Cl−n and |Zs| 6 x2/3 for s ∈ A(l) imply

Xn = cn−lZl +
∑

i∈B(l−n)

ciZn−i > xy + x2/3Cl−n − x2/3Cl−n = xy,

Zl > (xy + x2/3Cl−n)/cn−l > x2/3, for large x,

and

x + x2/3Cl < c−l|Zl| =
∣∣∣X0 −

∑

i∈B(l)

ciZ−i

∣∣∣ 6 |X0|+
∑

i∈B(l)

ci|Z−i| 6 |X0|+ x2/3Cl,

i.e. |X0| > x, we obtain that

P(c−lZl > x + x2/3Cl, cn−lZl > xy + x2/3Cl−n, |Zs| 6 x2/3 for all s ∈ A(l))

6 P(Xn > xy, |X0| > x, |Zl| > x2/3, |Zs| 6 x2/3 for all s ∈ A(l)) (4.14)

for large x. Therefore, from (4.10), (4.11) and (4.14) we obtain that, for large x,

I2(x) >
0∑

l=n−m

P
[
c−lZl > x+x2/3Cl, cn−lZl > xy+x2/3Cl−n, |Zs| 6 x2/3 for all s ∈ A(l)

]
.

Now take an arbitrary s ∈ (1, 2). Then for large x it holds that

x + x2/3Cl 6 sx and xy + x2/3Cl−n 6 sxy.

This implies

I2(x) >
0∑

l=n−m

P(c−lZl > sx, cn−lZl > sxy, |Zs| 6 x2/3 for all s ∈ A(l))

=
0∑

l=n−m

P(Zl > sbn,l(y)x, |Zs| 6 x2/3 for all s ∈ A(l)), for large x.
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Hence, since the random variables Zi are i.i.d., we obtain that

lim inf
x→∞

I2(x)

P(|X0| > x)
>

0∑

l=n−m

lim inf
x→∞

P(Zl > sbn,l(y)x, |Zs| 6 x2/3 for all s ∈ A(l))

P(|X0| > x)

=
0∑

l=n−m

lim inf
x→∞

P(Zl > sbn,l(y)x)

P(|X0| > x)
· [P(|Z1| 6 x2/3)]n+m

From the calculations that we have already made, it is clear that

lim
x→∞

P(Zl > sbn,l(y)x)

P(|X0| > x)
= p (sbn,l(y))−α.

This and the fact that P(|Z1| 6 x2/3) → 1 as x →∞, imply

lim inf
x→∞

I2(x)

P(|X0| > x)
> ps−α

0∑

l=n−m

(bn,l(y))−α.

Since s ∈ (1, 2) was arbitrary, letting s → 1, we obtain that

lim inf
x→∞

I2(x)

P(|X0| > x)
> p

0∑

l=n−m

(bn,l(y))−α. (4.15)

From relations (4.13) and (4.15) we conclude that

lim
x→∞

I2(x)

P(|X0| > x)
= p

0∑

l=n−m

(bn,l(y))−α. (4.16)

Now, relations (4.6), (4.7), (4.8), (4.9) and (4.16) give

lim
x→∞

P(x−1Xn > y
∣∣ |X0| > x) = p

0∑

l=n−m

(bn,l(y))−α. (4.17)

From the independency of Y0 and K, as well as |Y0| and Θ0, and the fact that ci = 0

for i > m, we get

P
(cn+K

cK

Y0 > y
)

=
m∑

j=0

P
(cn+K

cK

Y0 > y, K = j
)

=
m−n∑
j=0

P
(cn+j

cj

Y0 > y
)

P(K = j)

=
m−n∑
j=0

P
(cn+j

cj

|Y0|Θ0 > y, Θ0 = 1
)

cα
j =

m−n∑
j=0

P
(cn+j

cj

|Y0| > y
)

P(Θ0 = 1) cα
j

= p

m−n∑
j=0

P
(
|Y0| > ycj

cn+j

)
cα
j .



4.1 MA models 123

Since for z > 0, P(|Y0| > z) = 1[0,1)(z)+z−α1[1,∞)(z), after some standard calculations,

we obtain that

P
(
|Y0| > ycj

cn+j

)
cα
j = (bn,−j(y))−α.

Therefore

P
(cn+K

cK

Y0 > y
)

= p

m−n∑
j=0

(bn,−j(y))−α. (4.18)

Comparing (4.17) and (4.18) we conclude that

lim
x→∞

P(x−1Xn > y
∣∣ |X0| > x) = P

(cn+K

cK

Y0 > y
)
, y > 0. (4.19)

In a similar manner we get

lim
x→∞

P(x−1Xn 6 −y
∣∣ |X0| > x) = P

(cn+K

cK

Y0 6 −y
)
, y > 0. (4.20)

Recalling the definition of the tail process in Section 1.3, relations (4.19) and (4.20)

yield the first equation in (4.5). The second one then follows immediately. From (4.5)

we conclude that at most m+1 values Yn and Θn are different from 0 and all have the

same sign.

Observe further that, since the sequence (Xn) is m–dependent, it is also ρ–mixing

(ρn = 0 for n > m + 1). Hence by Proposition 2.19, Condition 2.14 holds when

α ∈ [1, 2). Therefore, the sequence (Xn) satisfies all the conditions of Theorem 2.15,

and the partial sum process Vn( · ), defined by (2.4), converges in distribution, as

n → ∞, to an α–stable Lévy process V ( · ) in D[0, 1] under the M1 topology. The

characteristic triple of the limiting process can be found from the results in Davis and

Resnick [23] and Davis and Hsing [24]. Suppose that α ∈ (0, 1) ∪ (1, 2) and EZ1 = 0

for α > 1. Then the characteristic triple is of the form (0, ν, b), where

ν(dx) = α

( m∑
i=0

ci

)α

|x|−1−α

(
p1(0,∞)(x) + q1(−∞,0)(x)

)
dx, (4.21)
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b = (p− q)
α

1− α

[( m∑
i=0

ci

)α

− 1
]
. (4.22)

The case when α = 1 can be treated similarly, but the corresponding expressions are

much more complicated, due to the specific form of the location parameter τ of the

characteristic function of V (1) represented in the form given in Theorem 1.45 (see

Remark 3.2 and Theorem 3.2 in Davis and Hsing [24]).

The following proposition concisely gives the functional limit theorem for finite

order MA processes considered in this section.

Proposition 4.1. Let (Xn) be a finite order MA process defined by (4.1), where (Zi)

is an i.i.d. sequence of regularly varying random variables with index α ∈ (0, 2), the

coefficients c0, c1, . . . , cm are nonnegative and at least c0 and cm are not equal to zero.

Then the following statements hold.

1. The partial sum stochastic process Vn( · ), defined by (2.4), converges in distribu-

tion to an α–stable Lévy process V ( · ) in D[0, 1] under the M1 topology.

2. Assume α ∈ (0, 1) ∪ (1, 2),
∑m

i=0 cα
i = 1 and EZ1 = 0 for α > 1. Then the

characteristic triple of the limiting process V ( · ) is of the form (0, ν, b), where ν

and b are given in (4.21) and (4.22).

Infinite order MA processes with nonnegative coefficients are considered in Avram

and Taqqu [3]. In principle, one can approximate such processes by a sequence of

finite order MA processes, for which Theorem 2.15 applies, and show that the error of

approximation is negligible in the limit. We decided not to pursue this here, since the

functional limit theorem for these processes already appears in [3].
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4.2 ARCH/GARCH models

We consider the model

Xn = σnZn, (4.23)

where (Zn)n∈Z is a sequence of i.i.d. random variables with EZ1 = 0 and Var Z1 = 1,

and

σ2
n = α0 + (α1Z

2
n−1 + β1)σ

2
n−1. (4.24)

Assume that α0 > 0 and the non-negative parameters α1, β1 are chosen such that a

strictly stationary solution to the equation (4.24) exists, namely

−∞ 6 E ln(α1Z
2
1 + β1) < 0

(see Goldie [34] and Mikosch and Stărică [51]). The process (Xn) is then strictly

stationary too. If α1 > 0 and β1 > 0 it is called a GARCH(1,1) process, while if α1 > 0

and β1 = 0 it is called an ARCH(1) process.

0 200 400 600 800 1000

−2
0

−1
0

0
10

20

Figure 4.1: A simulated GARCH(1,1) process with α0 = 1, α1 = 0.7 and β1 = 0.2.
The noise (Zn) is i.i.d. standard normal.

In the rest of the section we consider a stationary squared GARCH(1,1) process

(X2
n). Assume that Z1 is symmetric, has a positive Lebesgue density on R and there
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exists α ∈ (0, 2) such that

E[(α1Z
2
1 + β1)

α] = 1 and E[(α1Z
2
1 + β1)

α ln(α1Z
2
1 + β1)] < ∞.

Then it is known that the processes (σ2
n) and (X2

n) are regularly varying with index α

and strongly mixing with geometric rate (see Bartkiewicz et al. [6], Basrak et al. [9]

and Mikosch and Stărică [51]). Proposition 3 in Breiman [17]1 and Proposition 4.7 in

Bartkiewicz et al. [6] imply

P(X2
1 > x) ∼ E|Z1|2αP(σ2

1 > x) ∼ E|Z1|2αc1x
−α, as x →∞, (4.25)

where

c1 =
E[(α0 + (α1Z

2
1 + β1)σ

2
1)

α − (α1Z
2
1 + β1)

α]

αE[(α1Z2
1 + β1)α ln(α1Z2

1 + β1)]
> 0.

The squared GARCH(1,1) process can be embedded in the 2-dimensional stochastic

recurrence equation (SRE):

Xn = AnXn−1 + Bn. (4.26)

To see this, write

Xn =

(
X2

n

σ2
n

)
, An =

(
α1Z

2
n β1Z

2
n

α1 β1

)
, Bn =

(
α0Z

2
n

α0

)
.

Then (Xn) satisfies the SRE in (4.26). Stochastic recurrence equations have been

largely studied, see for example Babillot et al. [4], Basrak et al. [9], Bougerol and

Picard [14], Goldie [34], Mikosch and Stărică [51]. Write Y = max{Z2
1 , 1}. Then

‖X1‖ = Y σ2
1, where ‖ · ‖ is the ”sup” norm on R2. Since Y and σ2

1 are independent

nonnegative random variables such that EY < ∞ and σ2
1 is regularly varying with

index α, Proposition 3 in Breiman [17] implies

P(‖X1‖ > x) = P (Y σ2
1 > x) ∼ EY αP(σ2

1 > x) ∼ EY αc1x
−α as x →∞, (4.27)

1Breiman did not prove this result for general α, but only for α ∈ (0, 1). However, the proof works
for all α > 0.
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i.e. the random variable ‖X1‖ is regularly varying with index α.

Assume

E(ln ‖A1‖) < 0, (4.28)

where for a 2× 2-matrix A,

‖A‖ = sup
‖x‖=1

‖Ax‖

is the operator norm. One sufficient condition for relation (4.28) to hold is that α1 +

β1 < 1. Since E‖A1‖ < ∞, from Remark 2.9 in [9] it follows

E(‖A1‖ε) < 1, for some ε ∈ (0, α ∧ 1]. (4.29)

In order to show that the sequence (X2
n) satisfies the anti-clustering condition AC(an),

where (an) is a sequence of positive real numbers such that nP(X2
1 > an) → 1 as n →∞

(from (4.25) it follows that we can take an = (c1E|Z1|2αn)1/α), we first show that this

condition is satisfied by the sequence (Xn), and for this we will use a technique used

in the proof of Theorem 2.10 in [9]. Choose some s ∈ (0, ε/α) and define rn = bnsc.
Then

rn

aε
n

→ 0, as n →∞. (4.30)

Iterating (4.26) we obtain

Xi =
i∏

j=1

Aj X0 +
i∑

j=1

i∏
m=j+1

Am Bj =: Ii,1 X0 + Ii,2, i ∈ N.

This and the fact that X0 and Ii,2 are independent, imply, for an arbitrary u > 0,

P(‖Xi‖ > uan

∣∣ ‖X0‖ > uan)

6 P(‖X0‖ ‖Ii,1‖ > uan/2
∣∣ ‖X0‖ > uan) + P(‖Ii,2‖ > uan/2). (4.31)

Then using Markov’s inequality and Theorem 1.12 (note that ‖X0‖ is regularly varying

with index α), the limes superior of the first term on the right-hand side of (4.31) is
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bounded above by

lim sup
n→∞

E(‖Ii,1‖ε)2ε E[‖X0‖ε1{‖X0‖>uan}]
(uan)εP(‖X0‖ > uan)

6 2ε α

α− ε
(E‖A1‖ε)i. (4.32)

Further, it holds that

‖Ii,2‖ d
=

∥∥∥
i∑

j=1

j−1∏
m=1

Am Bj

∣∣∣ 6
i∑

j=1

j−1∏
m=1

‖Am‖ ‖Bj‖.

Using Markov’s inequality, the fact that, since ε ∈ (0, 1), (x1 + . . .+xn)ε 6 xε
1 + . . .+xε

n

for all n ∈ N and nonnegative x1, . . . , xn, and the i.i.d. property of the sequence (Zi),

we get

P(‖Ii,2‖ > uan/2) 6 a−ε
n (2/u)ε E‖B1‖ε

i∑
j=1

(E‖A1‖ε)j−1

6 a−ε
n (2/u)ε E‖B1‖ε

∞∑
j=0

(E‖A1‖ε)j.

= Ca−ε
n , (4.33)

where C = (2/u)ε E‖B1‖ε
∑∞

j=0(E‖A1‖ε)j < ∞ by (4.29). Since from our assumptions

it follows that the sequence (Xn) is strictly stationary (see for example Basrak et al.

[9] and Kesten [41]), we have

P(‖X−i‖ > uan

∣∣ ‖X0‖ > uan) = P(‖Xi‖ > uan

∣∣ ‖X0‖ > uan).

This and relations (4.30), (4.31), (4.32) and (4.33), then imply

lim
m→∞

lim sup
n→∞

P
(

max
m6|i|6rn

‖Xi‖ > uan

∣∣∣ ‖X0‖ > uan

)

6 lim
m→∞

lim sup
n→∞

∑

m6|i|6rn

P(‖Xi‖ > uan

∣∣ ‖X0‖ > uan)

6 lim
m→∞

2ε+1 α

α− ε

∞∑
i=m

(E‖A1‖ε)i

= 0, (4.34)
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where the last equation follows from (4.29). Hence condition AC(an) for the sequence

(Xn) holds. Then from (4.25), (4.27) and the fact that ‖Xi‖ > X2
i , we get

lim
m→∞

lim sup
n→∞

P
(

max
m6|i|6rn

X2
i > uan

∣∣∣X2
0 > uan

)

6 lim
m→∞

lim sup
n→∞

P
(

max
m6|i|6rn

‖Xi‖ > uan

∣∣∣ ‖X0‖ > uan

)
· P(‖X0‖ > uan)

P(X2
0 > uan)

= 0 · EY α

E|Z1|2α
= 0.

Therefore the sequence (X2
n) satisfies condition AC(an).

Define the sequence (ln) by ln = bns/2c. If (αn) denotes the sequence of α–mixing

coefficients of (X2
n), then since αn converges to zero geometrically fast, standard cal-

culations give, as n →∞,

knαln+1 → 0 and
knln
n

→ 0,

where kn = bn/rnc. This corresponds to relation (1.17) in the proof of Proposition

1.34. Following the line of the argument in the proof of that proposition, we conclude

that the mixing condition A′(an) holds.

Since the process (X2
n) is nonnegative, its tail process cannot have two values of

the opposite sign. If additionally Condition 2.14 holds when α ∈ [1, 2), then by Theo-

rem 2.15, the partial sum stochastic process Vn( · ), defined by

Vn(t) =

[nt]∑

k=1

X2
k

an

− bntcE
(

X2
1

an

1{X2
1

an
61

}
)

, t ∈ [0, 1], (4.35)

converges in distribution to an α–stable Lévy process V ( · ) in D[0, 1] under the M1

topology. Here (an)n is a positive sequence such that nP(X2
0 > an) → 1 as n →∞.

In case α ∈ (0, 1)∪(1, 2), the characteristic triple (0, ν, b) of the stable random vari-

able V (1) and thus of the stable Lévy process V ( · ) can be determined from Bartkiewicz
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et al. [6, Proposition 4.8], Davis and Hsing [24, Remark 3.1] and Remark 2.17: after

some calculations, we find

ν(dx) = c+ 1(0,∞)(x) αx−α−1 dx, b =
α

1− α
(c+ − 1), (4.36)

where

c+ =
E[(Z2

0 + T̃∞)α − T̃ α
∞]

E(|Z1|2α)
, T̃∞ =

∞∑
t=1

Z2
t+1

t∏
i=1

(α1Z
2
i + β1). (4.37)

Therefore, the functional limit result for the squares of GARCH(1,1) process is

given in the following proposition.

Proposition 4.2. Let (Xn) be a strictly stationary GARCH(1,1) process defined by

(4.23) and (4.24), where (Zi) is an i.i.d. sequence of random variables with EZ1 = 0 and

Var Z1 = 1, and the coefficients α0, α1 and β1 are positive. Assume Z1 is symmetric,

has a positive Lebesgue density on R, and

E[(α1Z
2
1 + β1)

α] = 1, E[(α1Z
2
1 + β1)

α ln(α1Z
2
1 + β1)] < ∞,

for some α ∈ (0, 2). Suppose further that E(ln ‖A1‖) < 0 and Condition 2.14 holds

when α ∈ [1, 2). Then the following statements hold.

1. The partial sum process Vn( · ), defined by (4.35), converges in distribution to an

α–stable Lévy process V ( · ) in D[0, 1] under the M1 topology.

2. Assume α ∈ (0, 1) ∪ (1, 2). Then the characteristic triple (0, ν, b) of the limiting

process V ( · ) is given by (4.36) and (4.37).

4.3 ARMA models

Suppose a strictly stationary sequence (Xn)n∈Z satisfies the ARMA(p,q) recursions

Xn = φ1Xn−1 + · · ·+ φpXn−p + Zn + θ1Zn−1 + · · ·+ θqZn−q, (4.38)
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where the coefficients φ1, . . . , φp, θ1, . . . θq are positive, Φ(z) := 1−φ1z−· · ·−φpz
p 6= 0

for all |z| 6 1, and (Zn) is an i.i.d. sequence of random variables. Assume Z1 regularly

0 200 400 600 800 1000

−5
0

5

Figure 4.2: A simulated ARMA(1,1) process with φ1 = 0.6 and θ1 = 1.2. The noise
(Zn) is i.i.d. standard normal.

varying with index α ∈ (0, 2) and EZ1 = 0 if α ∈ (1, 2). By results in Brockwell and

Davis [18], (Xn) has the causal representation

Xn =
∞∑

j=0

ψjZn−j, (4.39)

where the coefficients ψj can be found from the relation

Φ(z)
∞∑

j=0

ψjz
j = 1 + θ1z + · · ·+ θqz

q. (4.40)

Assume the sequence (ψj) satisfies the following condition

∞∑
j=0

|ψj|δ < ∞, for some 0 < δ < min{1, α}. (4.41)

Then it follows that X1 is regularly varying with index α,

lim
x→∞

P(X1 > x)

P(|X1| > x)
=

∑∞
j=0 |ψj|α[p 1(0,∞)(ψj) + q 1(−∞,0)(ψj)]∑∞

j=0 |ψj|α
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and

lim
x→∞

P(X1 < −x)

P(|X1| > x)
=

∑∞
j=0 |ψj|α[q 1(0,∞)(ψj) + p 1(−∞,0)(ψj)]∑∞

j=0 |ψj|α ,

where

p = lim
x→∞

P(Z1 > x)

P(|Z1| > x)
and q = lim

x→∞
P(Z1 < −x)

P(|Z1| > x)

(see for instance Lemma A.3 in Mikosch and Samorodnitsky [50]; cf. Cline [21] and

Kokoszka and Taqqu [42]).

Let n ∈ N be arbitrary. For every j > 0 define matrices An,j of dimension n × n

and n–dimensional random vectors Zn,j by

An,j =




ψj 0 0 . . . 0
0 ψj 0 . . . 0
0 0 ψj . . . 0
...

...
...

. . .
...

0 0 0 . . . ψj




Zn,j = (Z1−j, Z2−j, . . . , Zn−j)
′.

Then Zn,j is regularly varying with index α and

∞∑
j=0

‖An,j‖δ =
∞∑

j=0

|ψj|δ < ∞.

Now following the line of the argument given in Example 4.1, we conclude that the

random vector

(X1, . . . , Xn) =
∞∑

j=0

An,jZn,j

is regularly varying with index α. Therefore, the process (Xn) is regularly varying with

index α.

For simplicity we restrict our attention to the ARMA(1,1) model. Note that Φ(z) 6=
0 for all |z| 6 1 implies φ1 < 1. From (4.40) we find that ψ0 = 1 and ψj = (φ1+θ1) φj−1

1

for all j ∈ N. Therefore condition (4.41) holds. From the recursions in (4.38) and the



4.3 ARMA models 133

representation in (4.39) we have, for any i ∈ N,

Xi = φi
1X0 + Zi + (φ1 + θ1)

i−2∑

k=0

φk
1Zi−k−1 + φi−1

1 θ1Z0

= φi
1X0 +

i−1∑

k=0

ψkZi−k + φi−1
1 θ1Z0. (4.42)

To check the anti-clustering condition AC(an) we proceed in the following way. Since

X0 and (Zk)k>1 are independent and the sequence (Zk)k∈Z is strictly stationary, we

have

P
(

max
m6i6rn

|Xi| > tan

∣∣∣ |X0| > tan

)

6 P
(

max
m6i6rn

φi
1|X0| > tan

3

∣∣∣ |X0| > tan

)
+ P

(
max

m6i6rn

∣∣∣
i−1∑

k=0

ψkZi−k

∣∣∣ >
tan

3

)

+ P
(

max
m6i6rn

φi−1
1 θ1|Z0| > tan

3

∣∣∣ |X0| > tan

)

6 P
(
φm

1 |X0| > tan

3

∣∣∣ |X0| > tan

)
+

rn∑
i=m

P
( i−1∑

k=0

ψk|Zi−k| > tan

3

)

+ P
(
φm−1

1 θ1|Z0| > tan

3

∣∣∣ |X0| > tan

)

6
P

(
|X0| > tan

3φm
1

)

P(|X0| > tan)
+ rnP

( ∞∑

k=0

ψk|Z−k| > tan

3

)
+

P
(
|Z0| > tan

3φm−1
1 θ1

)

P(|X0| > tan)
(4.43)

where (an) is a sequence of positive real numbers such that nP(|X0| > an) → 1 and

(rn) is a sequence of positive integers such that rn → ∞ and rn/n → 0 as n → ∞.

Since X0 is regularly varying, the first term on the right hand side in (4.43) converges

to (3φm
1 )α as n →∞. From Theorem 2.3 in Cline [21] we obtain, as n →∞,

rnP
( ∞∑

k=0

ψk|Z−k| > tan

3

)

=
rn

n
· nP

(
|X0| > tan

3

)
·

P
(
|Z0| > tan

3

)

P
(
|X0| > tan

3

) ·
P

( ∑∞
k=0 ψk|Z−k| > tan

3

)

P
(
|Z0| > tan

3

)
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→ 0 ·
( t

3

)−α

· 1∑∞
j=0 ψ α

j

·
∞∑

j=0

ψ α
j = 0, (4.44)

and
P

(
|Z0| > tan

3φm−1
1 θ1

)

P(|X0| > tan)
→ (3φm−1

1 θ1)
α

∑∞
j=0 ψ α

j

.

Hence

lim sup
n→∞

P
(

max
m6i6rn

|Xi| > tan

∣∣∣ |X0| > tan

)
6 3α(φα

1 )m−1
(
φα

1 +
θα
1∑∞

j=0 ψ α
j

)
.

Letting m →∞, since φα
1 < 1, it follows

lim
m→∞

lim sup
n→∞

P
(

max
m6i6rn

|Xi| > tan

∣∣∣ |X0| > tan

)
= 0, t > 0. (4.45)

From relation (4.42) we see that

X0 = φ
|i|
1 Xi +

|i|−1∑

k=0

ψkZ−k + φ
|i|−1
1 θ1Zi, i < 0.

This leads to

P
(

max
−rn6i6−m

|Xi| > tan

∣∣∣ |X0| > tan

)

6
−m∑

i=−rn

P
(
|Xi| > tan

∣∣∣ |X0| > tan

)
=

−m∑
i=−rn

P(|Xi| > tan, |X0| > tan)

P(|X0| > tan)

6
−m∑

i=−rn

[
P

(
|Xi| > tan, φ

|i|
1 |Xi| > tan

3

)

P(|X0| > tan)
+

P
(
|Xi| > tan,

∑|i|−1
k=0 ψk|Z−k| > tan

3

)

P(|X0| > tan)

+
P

(
|Xi| > tan, φ

|i|−1
1 θ1|Zi| > tan

3

)

P(|X0| > tan)

]
.

Since Xi and (Z−k)06k6|i|−1 are independent, we obtain the bound

6
−m∑

i=−rn

P
(
|X0| > tan, 3φ

|i|
1 |X0| > tan

)

P(|X0| > tan)
+

−m∑
i=−rn

P
( |i|−1∑

k=0

ψk|Z−k| > tan

3

)

+
−m∑

i=−rn

P
(
|Xi| > tan, 3φ

|i|−1
i θ1|Zi| > tan

)

P(|X0| > tan)
.

=: I1(n, m) + I2(n,m) + I3(n,m). (4.46)



4.3 ARMA models 135

Take an arbitrary ε ∈ (0, α). Then using Markov’s inequality we obtain

I1(n,m) =
−m∑

i=−rn

P
(
3φ

|i|
1 |X0|1{|X0|>tan} > tan

)

P(|X0| > tan)

6
E

[|X0|ε1{|X0|>tan}
]

(tan)εP(|X0| > tan)

−m∑
i=−rn

(3φ
|i|
1 )ε.

An application of Theorem 1.12 yields that

lim sup
n→∞

I1(n,m) 6 α

α− ε
3ε

∞∑
i=m

(φε
1)

i,

and since φε
1 < 1, letting m →∞, we get

lim
m→∞

lim sup
n→∞

I1(n, m) = 0.

As in (4.44) we obtain

lim sup
n→∞

I2(n,m) 6 lim sup
n→∞

rnP
( ∞∑

k=0

ψk|Z−k| > tan

3

)
= 0.

Since Xi = φ1Xi−1 + Zi + θ1Zi−1, we have

I3(n,m) 6
−m∑

i=−rn

P
(
φ1|Xi−1| > tan

3
, 3φ

|i|−1
i θ1|Zi| > tan

)

P(|X0| > tan)

+
−m∑

i=−rn

P
(
|Zi| > tan

3
, 3φ

|i|−1
i θ1|Zi| > tan

)

P(|X0| > tan)

+
−m∑

i=−rn

P
(
θ1|Zi−1| > tan

3
, 3φ

|i|−1
i θ1|Zi| > tan

)

P(|X0| > tan)
.

The second term on the right hand side of this inequality can be treated in a similar

way as I1(n,m). Since Zi and Xi−1 are independent and φm−1
1 > φ

|i|−1
1 for all i =

−rn, . . . ,−m, it follows that the first term is bounded above by

rn

P
(
φ1|X0| > tan

3

)
P

(
3φm−1

1 θ1|Z0| > tan

)

P(|X0| > tan)
,
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which by a standard regular variation argument converges to zero as n → ∞. The

same can be done for the third term. Thus

lim
m→∞

lim sup
n→∞

I3(n,m) = 0,

and from (4.46) we therefore have

lim
m→∞

lim sup
n→∞

P
(

max
−rn6i6−m

|Xi| > tan

∣∣∣ |X0| > tan

)
= 0, t > 0. (4.47)

Now relations (4.45) and (4.47) imply condition AC(an).

Let (Yn) be the tail process of (Xn). Fix i ∈ N and let ε > 0 be arbitrary. Then

from the definition of the tail process in Section 1.3, we have

P(Yi < −ε, Y0 > 1) = lim
x→∞

P(Xi < −εx, X0 > x
∣∣ |X0| > x).

Taking into account relation (4.42), the fact that Xk and (Zj)j>k+1 are independent

and the recursion in (4.38), we get

P(Xi < −εan, X0 > an

∣∣ |X0| > an)

=
P

(
φi

1X0 +
∑i−1

k=0 ψkZi−k + φi−1
1 θ1Z0 < −εan, X0 > an

)

P(|X0| > an)

6
P

( ∑i−1
k=0 ψkZi−k + φi−1

1 θ1Z0 < −(ε + φi
1)an, X0 > an

)

P(|X0| > an)

6
P

( ∑i−1
k=0 ψkZi−k < − (ε+φi

1)an

2
, X0 > an

)

P(|X0| > an)
+

P
(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, X0 > an

)

P(|X0| > an)

6 P
( i−1∑

k=0

ψkZi−k < −(ε + φi
1)an

2

)

+
P

(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, φ1X−1 + Z0 + θ1Z−1 > an

)

P(|X0| > an)
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6 P
(∣∣∣

i−1∑

k=0

ψkZi−k

∣∣∣ >
(ε + φi

1)an

2

)
+

P
(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, X−1 > an

3φ1

)

P(|X0| > an)

+
P

(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, Z0 > an

3

)

P(|X0| > an)
+

P
(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, Z−1 > an

3θ1

)

P(|X0| > an)

6 P
( ∞∑

k=0

ψk|Zi−k| > (ε + φi
1)an

2

)
+

P
(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

)
P

(
X−1 > an

3φ1

)

P(|X0| > an)

+
P

(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

, Z0 > an

3

)

P(|X0| > an)
+

P
(
Z0 < − (ε+φi

1)an

2φi−1
1 θ1

)
P

(
Z−1 > an

3θ1

)

P(|X0| > an)
.

A standard regular variation argument (as before in checking condition AC(an)) yields

that the first, second and forth term on the right hand side of the last inequality

converge to zero as n → ∞. Since φ1 and θ1 are positive, the third term is trivially

equal to zero. Hence

P(Xi < −εan, X0 > an

∣∣ |X0| > an) → 0, as n →∞,

and this imply P(Yi < −ε, Y0 > 1) = 0 for any ε > 0. Since |Y0| > 1 a.s., it follows

P(Yi < 0, Y0 > 0) = 0 for any i > 0. In the same way we obtain P(Yi > 0, Y0 < 0) = 0.

Hence (Yn)n>0 a.s. has no two values of the opposite sign. The same conclusion can

be obtained for (Yn)n60, thus yielding the tail process (Yn)n∈Z a.s. has no two values

of the opposite sign.

Assume that the sequence (Xn) is strongly mixing. One sufficient condition for

this property in our case is that the characteristic function ϕ1 of Z1 is integrable and

satisfies ∫
|ϕ1(x)| dx 6 2π,

see Chanda [19] (some other sufficient conditions for the strong mixing property of

(Xn) can be found in Athreya and Pantula [2] and Mokkadem [52]). Then the mix-
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ing condition A′(an) holds. If Condition 2.14 holds when α ∈ [1, 2), then all con-

ditions in Theorem 2.15 are satisfied and we obtain the functional limit theorem for

the ARMA(1,1) model considered in this section. With the same explanation as in

Section 4.1 and with an additional assumption that
∑∞

j=0 ψ α
j = 1, we have that for

α ∈ (0, 1)∪ (1, 2), the characteristic triple of the limiting process is of the form (0, ν, b),

where

ν(dx) = α

( ∞∑
j=0

ψj

)α

|x|−1−α

(
p1(0,∞)(x) + q1(−∞,0)(x)

)
dx, (4.48)

b = (p− q)
α

1− α

[( ∞∑
j=0

ψj

)α

− 1
]
. (4.49)

Hence we have proven the following result.

Proposition 4.3. Let (Xn) be an ARMA(1,1) process, i.e.

Xn = φ1Xn−1 + Zn + θ1Zn−1,

where the coefficients φ1, θ1 are positive and φ1 < 1, and the sequence (Zn) consists

of i.i.d. regularly varying random variables with index α ∈ (0, 2) such that EZ1 = 0

if α ∈ (1, 2). Suppose (Xn) is strongly mixing and that Condition 2.14 holds when

α ∈ [1, 2). Then the following statements hold.

1. The partial sum process Vn( · ), defined by (2.4), converges in distribution to an

α–stable Lévy process V ( · ) in D[0, 1] under the M1 topology.

2. Assume α ∈ (0, 1)∪ (1, 2) and
∑∞

j=0 ψ α
j = 1. Then the characteristic triple of the

limiting process V ( · ) is of the form (0, ν, b), where ν and b are given in (4.48)

and (4.49).
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4.4 Stochastic volatility models

Consider the stochastic volatility model

Xn = σnZn, n ∈ Z,

where the noise sequence (Zn) consists of i.i.d. regularly varying random variables

with index of regular variation α ∈ (0, 2), and the volatility sequence (σn) is strictly

stationary, independent of the sequence (Zn) and consists of positive random variables

such that E(σ2α+r
0 ) < ∞ for some r > 0.

An application of the well known Breiman’s lemma [17, Proposition 3] on regularly

varying tail of a product of two independent random variables yields that every ran-

dom variable Xn is regularly varying with index α. Assume further that (ln σn)n is a

Gaussian causal ARMA process. Then (Xn) is strongly mixing with geometric rate

(see Davis and Mikosch [26]).

Take 0 < s < min{r, 4 − 2α}. For any i ∈ N and x > 0 we have by Markov’s

inequality and the fact that the sequence (Zn) is i.i.d.,

P(|Xi| > xan, |X0| > xan) 6 P(max{σi, σ0} ·min{|Zi|, |Z0|} > xan)

6 P(max{σi, σ0} > (xan)1/2−s/8) + P(min{|Zi|, |Z0|} > (xan)1/2+s/8)

6 (xan)−(1/2−s/8)(2α+s)E[(max{σi, σ0})2α+s] + [P(|Z0| > (xan)1/2+s/8)]2

6 (xan)−(1/2−s/8)(2α+s) · 2E(σ2α+s
0 ) + [P(|Z0| > (xan)1/2+s/8)]2,

where (an) is a sequence of positive real numbers such that nP(|X1| > an) → 1 as

n →∞. Take 0 < p < min{s/8, s(4− 2α− s)/8α} and define rn = bnpc. Then
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n

rn∑
i=1

P(|Xi| > xan, |X0| > xan) 6 2E(σ2α+s
0 )nrn(xan)−(1/2−s/8)(2α+s)

+ nrn[P(|Z0| > (xan)1/2+s/8)]2

=: I1(n) + I2(n). (4.50)

Since an = n1/αL′(n) for some slowly varying function L′, we have

I1(n) 6 C1n
1+p−(1/2−s/8)(2+s/α)L′1(n),

where C1 = C1(x) = 2E(σ2α+s
0 )x−(1/2−s/8)(2α+s) and L′1(n) = (L′(n))−(1/2−s/8)(2α+s).

From the definition of p we obtain 1+p−(1/2−s/8)(2+s/α) < 0, which by Proposition

1.3.6 in Bingham et al. [13] implies I1(n) → 0 as n →∞.

Take now 0 < k < αs/(4+s). Since P(|Z0| > x) = x−αL(x) for some slowly varying

function L, we have

I2(n) 6 C2n
1+p(an)(1/2+s/8)(−2α+k)(an)−(1/2+s/8)k [L((xan)(1/2+s/8))]2

= C2n
1+p+(1/2+s/8)(−2+k/α)L′2(n) · cn,

where C2 = C2(x) = x−2α(1/2+s/8), L′2(n) = (L′(n))(1/2+s/8)(−2α+k), and

cn = (an)−(1/2+s/8)k [L((xan)(1/2+s/8))]2.

From the definitions of p and k it follows that 1+p+(1/2+s/8)(−2+k/α) < 0. Since

also −(1/2 + s/8)k < 0, from Proposition 1.3.6 in [13] we obtain

n1+p+(1/2+s/8)(−2+k/α)L′2(n) → 0 and cn → 0,

and hence I2(n) → 0 as n →∞. Therefore from relation (4.50) it follows

lim
n→∞

n

rn∑
i=1

P(|Xi| > xan, |X0| > xan) = 0, x > 0.
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Hence relation (3.18) holds.

Therefore, we can apply Theorem 3.7 to obtain the following proposition.

Proposition 4.4. Let (Xn) be a stochastic volatility model, i.e. Xn = σnZn, where

(Zn) is a i.i.d. sequence of regularly varying random variables with index α ∈ (0, 2),

and the sequence (σn) is independent of the sequence (Zn) and consists of positive

random variables such that E(σ2α+r
1 ) < ∞ for some r > 0. Assume (ln σn) is a

Gaussian causal ARMA process and that Condition 2.14 holds for α ∈ [1, 2). Then the

partial sum stochastic process Vn( · ), defined by (2.4), converges in distribution, to an

α-stable Lévy process V0( · ) in D[0, 1] under the J1 topology. The characteristic triple

of the limiting process V0( · ) is of the form (0, µ, 0), where the measure µ is the vague

limit of nP(X1/an ∈ ·) as n →∞.

We recall here that one sufficient condition for Condition 2.14 to hold is that the

sequence (Xn) is a function of a Gaussian causal ARMA process, i.e. Xn = f(An),

for some Borel function f : R → R and some Gaussian causal ARMA process (An).

From the results in Brockwell and Davis [18] and Pham and Tran [57] (see also Davis

and Mikosch [26]) it follows that the sequence (An) is strongly mixing with geometric

rate. In this particular case this implies that the sequence (An) is ρ-mixing with

geometric rate (see Kolmogorov and Rozanov [43, Theorem 2]), a property which

transfers immediately to the series (Xn). Hence by Proposition 2.19, Condition 2.14

holds.
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miaux. Ann. Inst. H. Poincaré Probab. Statist. 26, 219–260.

[53] Neveu, J. (1977). Processus ponctuels, in École d’Été de Probabilités de Saint-
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Summary

Functional limit theorems present a rich and interesting part of probability theory.

They have been first obtained for independent and identically distributed random

variables with finite second moments. This is the content of Donsker’s theorem (see

for instance Billingsley [12]). One direction of extending these results is to replace the

independence by weak dependence, for example by assuming the underlying random

variables are strongly mixing. The other direction involves studying functional limit

theorems for random variables with infinite second moments. It is well known that

regularly varying random variables with tail index α ∈ (0, 2) have infinite second

moments. This thesis is dedicated to both of these two extensions.

More precisely, let (Xn)n>1 be a strictly stationary sequence of random variables.

This thesis investigates the asymptotic distributional behavior of the partial sum

stochastic processes

Vn(t) = a−1
n (Sbntc − bntcbn), t ∈ [0, 1],

under the properties of weak dependence and regular variation with index α ∈ (0, 2),

where Sn = X1 + · · · + Xn, (an) is a sequence of positive real numbers such that, as

n →∞,

n P(|X1| > an) → 1,

and

bn = E
(
X1 1{|X1|6an}

)
.

The stochastic processes that we study have discontinuities, so for the underlying

function space of their sample paths we choose the space D[0, 1] of all right-continuous
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real valued functions on [0, 1] with left limits. If the D[0, 1]-valued process Vn( · )
converges in distribution, we say that the sequence (Xn) satisfies the functional limit

theorem with respect to a certain metric (or topology) on D[0, 1]. The most frequently

used topology on D[0, 1] is Skorohod’s J1 topology. We present three cases for which

functional limit theorems hold with respect to this topology. But there are examples

when the J1 topology is not suitable for describing the convergence in distribution

of the partial sum stochastic processes. If we use Skorohod’s M1 topology (which is

weaker than J1 topology), then in part of these ”problematic” examples we are able

to recover the convergence in distribution of the processes Vn( · ) and functional limit

theorems will hold.

A special attention is given to the theory of point processes, since they are the base

for our results. The convergence in distribution of the processes Vn( · ) is obtained from

a new convergence of a special type of time-space point processes through the use of

continuous mapping theorem. A notion that is used throughout the whole thesis is

regular variation. Beside point processes and regular variation, other major notions

that we use are vague convergence, tail process and strong mixing.

The main result of the thesis gives conditions under which a strictly stationary,

regularly varying sequence of random variables with index α ∈ (0, 2) satisfies the

functional limit theorem with respect to Skorohod’s M1 topology, with the limit being

an α–stable Lévy process, which is characterized in terms of its characteristic triple.

We also investigate conditions under which four applied time series models, namely

MA, squared GARCH(1,1), ARMA(1,1) and stochastic volatility models, satisfy the

functional limit theorem.



Sažetak

Fuunkcionalni granični teoremi predstavljaju bogato i zanimljivo područje teorije vjero-

jatnosti. Prvo su bili dobiveni za slučaj nezavisnih i jednako distribuiranih slučajnih

varijabli koje imaju konačne druge momente. To je sadržaj Donskerovog teorema (vidi

Billingsley [12]). Jedan smjer u poopćenju ovih rezultata jest zamjena svojstva nezav-

isnosti slabom zavisnošću, na primjer pomoću pretpostavke jakog miješanja. Drugi

mogući smjer poopćenja uključuje proučavanje funkcionalnih graničnih teorema za

slučajne varijable s beskonačnim drugim momentima. Poznato je da regularno vari-

rajuće slučajne varijable s indeksom α ∈ (0, 2) imaju beskonačne druge momente. Ova

disertacija se bavi sa oba smjera.

Preciznije, neka je (Xn)n>1 strogo stacionaran niz slučajnih varijabli. Ova dis-

ertacija istražuje asimptotsko ponašanje distribucija slučajnih procesa parcijalnih suma

Vn(t) = a−1
n (Sbntc − bntcbn), t ∈ [0, 1],

uz uvjete slabe zavisnosti i regularne varijacije sa indeksom α ∈ (0, 2), gdje je Sn =

X1 + · · ·+ Xn, (an) niz pozitivnih realnih brojeva takav da, kada n →∞,

n P(|X1| > an) → 1,

i

bn = E
(
X1 1{|X1|6an}

)
.

Slučajni procesi koje proučavamo imaju prekide, pa za funkcijski prostor njihovih

putova koristimo prostor D[0, 1] svih zdesna neprekidnih realnih funkcija na [0, 1] sa

limesima slijeva. Ako process Vn( · ) konvergira po distribuciji u D[0, 1], kažemo da
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niz (Xn) zadovoljava funkcionalan granični teorem obzirom na pripadnu metriku (ili

topologiju) na D[0, 1]. Najčešće korǐstena topologija na D[0, 1] je Skorohodova J1

topologija. Tri primjera u kojima funkcionalni granični teoremi vrijede obzirom na

ovu topologiju prezentirana su u disertaciji. Postoje primjeri kada J1 topologija nije

pogodna za opis konvergencije po distribuciji slučajnih procesa parcijalnih suma. No

ako upotrijebimo Skorohodovu M1 topologiju (koja je slabija od J1 topologije), tada

smo u dijelu tih ”problematičnih” primjera u mogućnosti dobiti konvergenciju po dis-

tribuciji slučajnih procesa Vn( · ) i funkcionalni granični teoremi će vrijediti.

Poseban je naglasak stavljen na teoriju točkovnih procesa, koji predstavljaju temelj

dobivenih rezultata. Konvergencija po distribuciji slučajnih procesa Vn( · ) je dobivena

iz nove konvergencije jednog specijalnog niza točkovnih procesa korǐstenjem teorema

o neprekidnom preslikavanju. Pojam koji se koristi kroz cijelu disertaciju je regularna

varijacija. Osim točkovnih procesa i regularne varijacije, ostali važni pojmovi koje

koristimo jesu slabašna [vague] konvergencija, repni proces i jako miješanje.

Glavni rezultat disertacije navodi uvjete pod kojima strogo stacionaran, regularno

varirajući niz slučajnih varijabli s indeksom α ∈ (0, 2) zadovoljava funkcionalni granični

teorem obzirom na Skorohodovu M1 topologiju, s α–stabilnim Lévyjevim procesom kao

limesom, koji je karakteriziran pomoću svoje karakteristične trojke.

Na kraju disertacije istražujemo uvjete pod kojima četiri modela vremenskih nizova,

koji se često koriste u primjenama, zadovoljavaju funkcionalni granični teorem.
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