\mathbb{F}_{p^2} -maximal curves with many automorphisms are Galois-covered by the Hermitian curve

Daniele Bartoli

University of Perugia

(Joint work with Maria Montanucci and Fernando Torres)

The Hermitian curve \mathcal{H}_q : $y^q + y = x^{q+1}$, for a prime power q, is the best known example of \mathbb{F}_{q^2} -maximal curve, i.e curve whose number $N(\mathcal{H}_q)$ of \mathbb{F}_{q^2} -rational points attains the Hasse-Weil upper bound $N(\mathcal{H}_q) = q^2 + 1 + 2g(\mathcal{H}_q)q$. Each curve \mathcal{Y} which is covered by an \mathbb{F}_{q^2} -maximal curve is also \mathbb{F}_{q^2} -maximal.

It is an open problem to decide whether any \mathbb{F}_{p^2} -maximal curve is \mathbb{F}_{p^2} covered by the Hermitian curve \mathcal{H}_p or not. We give an affirmative answer
for \mathbb{F}_{p^2} -maximal curves \mathcal{X} having a large automorphism group, showing that
if

$$|Aut(\mathcal{X})| > 84(g(\mathcal{X}) - 1)$$

then \mathcal{X} is Galois covered by \mathcal{H}_p .

Also, we show that this result does not extend to curves whose full automorphism group satisfies $|Aut(\mathcal{X})| \leq 84(g(\mathcal{X}) - 1)$, as we construct an \mathbb{F}_{71^2} -maximal curve \mathcal{F} of genus 7, having a Hurwitz automorphism group of order 504 which is not Galois covered by \mathcal{H}_{71} . The curve \mathcal{H} is the positive characteristic analog of the so called Fricke-MacBeath curve in zero characteristic, and it is the first known example of \mathbb{F}_{p^2} -maximal curve which is not Galois-covered by the Hermitian curve \mathcal{H}_p .