Codes and modules associated with
designs and ¢-uniform hypergraphs

—Abstract and summary—

Richard M. Wilson
Californialnstitute of Technology

Abstract. Thefirst part of theselecturesintroduces the Smith normal form and the
invariant factors of an integer matrix, and the relation of Smith form to systems of
linear diophantine equations. We give selected examples of how invariant factors
appear and may be applied to the theory of combinatorial designs. Importantly,
we may sometimes construct sefl-dual p-ary codes from hypothetical designs and
sometimes deduce the non-existence of designs from a theorem of Witt. In the
second part of the notes, we are concernedwith diagonal forms of variousincidence
matrices arising from ¢-designsand ¢-uniform hypergraphs. Applications are given
to a certain zero-sum Ramsey-type problem involving ¢-uniform hypergraphs.

1. Introduction

In these lecture notes, we survey some appearances of Smith normal form (or invariant
factors, or elementary divisors) of integer matrices that arise in the theory of combina
torial designs. We are also concerned with the p-ary codes that are generated by or arise
from integer matrices, for primes p.

The invariant factors, and hence the rank modulo a prime p, of a matrix A do not
change on row or column permutations of the rows and columns (or transpose). Thus
they do not depend on the ordering of the vertices when A is the adjacency matrix of a
graph G, or on the ordering of pointsand blocks or some incidence structure S. etc. Thus
theinvariant factors of the adjacency matrix of a graph G, or the incidence matrix of S,
areinvariantsof G or S, respectively, and are aso the same for two isomorphic graphs
or incidence matrices. So, for example, two graphs can be shown to be nonisomorphic
by showing that they have different invariant factors.

The simplest way to get a p-ary code from an integer matrix A is to take its row
space modulo p. The dimension of this code is the p-rank of A, and it is equal to the
number of invariant factors of A that are not divisible by p. A chain of p-ary codes
Co C C1 € Cy C ... may be defined so that the dimension of C'; is the number of
invariant factors of A that are not divisible by p7+1.

If A istheincidence matrix, or modified incidence matrix, of a hypothetical design,
it is sometimes possible to show that one of these codes is self-dual with respect to an
appropriate inner product. Witt's theorem (see Section 5) may imply that a code with
these properties does not exist, in which case we may conclude that the hypothetical



design does not exist. Nonexistence results of this type are sometimes consequences of
the Hasse-Minkowski theory of rational congruence, but at other times may be proved
when the theory of rational congruence does not appear to apply. A self-dual binary code
of length 112 would arise from a hypothetical projective plane of order 10; in this case,
coding theory and extensive calculations by Lam and others shows that no such plane
exists; see [12].

Inclusion matrices of ¢-subsets verusus k-subsets, and, more generally, incidence
matrices of ¢-subsets and the ¢-uniform hypergraphs isomorphic to a given ¢-uniform
hypergraph H, are introduced in Section 7. Diagonal forms for the inclusion matrices
are described. The results of Section 7 are applied to the binary case of a zero-sum
Ramsey-type problem introduced by Alon and Caro [1] in Section 9. In Section 10,
we describe some recent joint work with Tony Wong on diagonal forms of the latter
incidence matrices, in particular whent = 2, and H isasimple graph.

Most proofs are omitted in this summary. Many will be supplied inthe lecturesor in
more extensive notes.

2. Smith and diagonal form

Given an r by m integer matrix A, there exist unimodular matrices £ and F, of orders r
andm, sothat EAF = D where D isan r by m diagona matrix. Here ‘ diagonal’ means
that the (7, j)-entry of D isO unlessi = j; we do not require that D is square. We call
any matrix D that arisesin thisway a diagonal formfor A.

Let the diagonal entries of D be d;, ds, ds, . . .. Here and in the sequel, d; may be
interpreted as O if the index i exceeds the number of rows or columns. If al diagonal
entries d; are nonnegative and d; dividesd; 1 fori = 1,2,..., then D is caled the
integer Smith normal form of A, or simply the Smith form of A, and theintegersd ; are
called the invariant factors, or the elementary divisors of A. The Smith form is unique;
the unimodular matrices £ and F' are not.

Asasimpleexample, let A = (Z _12

(10)(314) (1):1_31 _(100>
21)\4—27) ;| 050

where the first and the third matrices are unimodular. Thus D = (
form of A.

Let s1,59,...,s, betheinvariant factors of a n by n integer matrix A. If A is
nonsingular, then s,, A~! isintegral. One way to see thisis to use the formula

‘71).Wehave

100

05 0) is adiagonal

1
~ det(A)
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where A4 jsthe classical adjoint of A, with (i, j)-entry (—1)%*7 det(A;;) and where
Aj; istheresult of deleting row j and column i from A. The determinant det(A ;;) isan
integer divisibleby s1s5 -+ - s,—1 and det(A4) = s1 - - - sy,



3. Solutionsof linear equationsin integers

Diagonal forms are related to solutions of systems of linear equations or congruences in
integers. This, infact, wasthe topic of H. J. S. Smith’s original paper on the subject.

Let A beanr by m integer matrix. Suppose EAF = D where E and F’ are unimod-
ular and D isdiagonal with diagonal entriesd 1, da, . . .. Thesystem Ax = b isequivalent
to (AF)(F~!x) = b, and this has integer solutions x if and only if (AF)z = b has an
integer solution z. Thisin turn will have integer solutionif and only if EAFz = Eb, or
Dz = Eb, hasinteger solutions.

In other words, if we let e; denote the i-th row of E, the system Ax = b has integer
solutionsif and only if

eb=0 (modd;) fori=1,2... r @

If the conditions (1) hold, then the integer solutions are easy to describe.
Asasimple example,

(10)(314) (1):1_31 _(100)
21)\4—27) | 050

and so the system of equations

x4+ y +4z=a
dr —2y+T7z=15b

has an integer solution if and only if 2a + b = 0 (mod 5).

4. Square incidence matrices

The following two theorems are from Newman [16].

Theorem 4.1 Suppose A is an n by n integer matrix such that AAT = mI for some
integer m. Let sq, s9, ..., s, be the invariant factors of A. Then s;s,11-; = m for
i=1,2,...,n.

Proof. If cA~! isan integer matrix for some integer c, then theinvariant factorsof cA —!
are c/sp,c/sn_1,...,¢/s2,¢/51. To see this, suppose EBF = D for some unimodu-
lar matrices E and F', where D = diag(si, s2, - - -, s,) 1S the Smith form, of A, with
diagonal entries

s1lsa ]| sn. )
Then F~Y(cA"Y)E~! = ¢D~!. That is, cD~! isadiagonal form for cA~!. It is not

necessarily the Smith form, since the diagonal element ¢/s;41 divides ¢/s; and not the
other way around. But the invariant factors of cA ~! in the correct order will be
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If AAT = mI, then AT = mA~! isintegral and the invariant factorsof AT are
those in (3) with ¢ replaced by m. But the invariant factors of the transpose of a matrix
are the same as those of the orignal matrix, and so the factorsin (2) are, by the uniquess
of the Smith form, identical to thosein (3), with ¢ replaced by m, and the result follows.
U

A Hadamard matrix of order n isann by n matrix H, withentries+1 and —1 only,
sothat HH™ = nl. It is known that the existence of a Hadamard matrix of order n
impliesn = 1,2, or 4m for some integer m.

Theorem 4.2 If H isa Hadamard matrix of order n = 4t, and ¢ is squarefree, then the
invariant factorsof H are

(1)17 (2)2t—17 (2t>2t_1, (4.”1.

Proof. By Theorem 4.1, the invariant factors s; of H satisfy s;s,+1-; = n = 4t. Since
theentriesof H are+1, itisclear that s; = 1, and sincethe 2-rank of H is1, al invariant
factorsof H are even except for the smallest, s;. For i < n/2, s; divides s, 11—, SO s?
divides 4¢. Since ¢ is squarefree, we conclude that s; divides 2, and so is equal to 2 for
1=2,3,...,n/2. The theorem follows. O

A conference matrix of order n isan n by n matrix C, with 0's on the diagonal and
non-diagonal entries +1 and —1 only, sothat CC' " = (n — 1)1. Itisclear that the order
of aconference matrix, if greater than 1, is even.

Theorem 4.3 If C isa conference matrix of order n = 2¢, and n — 1 is squarefree, then
the invariant factorsof C are

@ (n—-1)"

Theorem 4.4 Suppose A isann by n integer matrix such that AUA T = mV for some
integer m, where U and V' are square matrices of order n with determinants relatively
primeto m. Let sq, s9,..., s, bethe invariant factors of A. Then s;s,41—; = m for
i=1,2,...,n.

A (v, k, \)-design consists of a v-set X (of points) and a family B of k-subsets
(called blocks) of X so that any two distinct points are contained in exactly A of the
blocks. For background on designs, and proofs of the observations of the next two para-
graphs, see Chapter 19 of [15].

The incidence matrix N of such a design is the v by b matrix (here b = |B| =
Av(v—1)/(k(k — 1)) isthe number of blocks) with rowsindexed by the elements of X,
columnsindexed by the elements of B, and where

1 ifxeB,
0 otherwise.

N(x,B):{



Itiswell known that
NNT =(r = \NI+\J (4)

wherer = A(v — 1)/(k — 1) isthe number of blocks that contain any given point. Here
I and J are v by v matrices, where I istheidentity and J the matrix of all 1's.

When | X| = |B|,i.e. v = b, thedesign is said to be a (v, k, \)-symmetric design.
Here the incidence matrix is square of order v. We have r = k and a fundamental re-
lation A(v — 1) = k(k — 1). It is clear that the sum of al rows of N is the row vec-
tor (k, k, ..., k), and the sum of all columns of N is the transpose of this vector. The
equation (4) impliesdet(N) = +n(*—1/2E,

Theorem 4.5 (Deretzky [6]) Let N is the incidence matrix of a (v, k, A)-symmetric de-
signwhere k and X\ are relatively prime, and write n = k — A. The invariant factors of
N satisfy

$1=82=1, 8iSy40-s=n fori=34,...,0—1, ands, =nk.

5. Self-dual codes; Witt'stheorem

A p-ary linear code of length n is a subspace C' of the vector space I, of ordered n-
tuples of elements of thefield IF,, of p elements. Here p isaprime, and we normally think
of members of C' and I} as row vectors. All codes in these notes will be linear codes
over aprimefield.

Given a p-ary code C, the dual code C'* is defined as the set of a € I} such that
(a,c) = 0foral c € C. Here (a,c) is the standard inner product of the two vectors,
i.e. (a,c) = ac’. The dimensions dim(C') and dim(C' ") sum to n. The code C is self-
orthogonal when C' C C'*, and self-dual when C' = C'*. A self-dual code of lenthn has
dimensionn/2.

Given an r by m integer matrix A, we may consider the rows as vectorsinIF;*. The
row space row,,(A) of A over F,, is, of course, ap-ary linear code; C* isthe null space
of A over IF,,. Multiplying a matrix on the right of Ieft by a unimodular matrix does not
change its rank modulo p, so the dimension of C' = row,,(A) is the rank modulo p of
adiagona form D of A, and thisis the number of diagonal entries of D that are not
divisibleby p.

Self-dual codes may be obtained from certain Hadamard and conference matrices.
Moregenerally, suppose AAT = mI for somen by n matrix A. Supposep isaprimethat
dividesm. Then AAT = O over F,,, sorow, (A) isaself-orthogonal code. Now suppose
that p exactly dividesm, i.e. p | m but p? | m. Lét s1, so, . .., s, be the invariant factors
of A. By Theorem 4.1, s;s,,+1—; = m, So exactly oneof s; and s,,11_; isdivisibleby p.
It followsthat the p-rank of A isn/2 and that row ,(A) isaself-dual p-ary code.

The simplest case of Witt’'s Theorem, Theorem 5.2 below, isthat there exists a self-
dual p-ary code of length n, where p is an odd prime, if and only if (—1)"/2 is a square
inF,,. This says nothing if n = 0 (mod 4) or if p = 1 (mod 4), because this condition
isawaystrue. But whenn = 2 (mod 4) and p = 3 (mod 4), there is no self-dual p-ary
code of length n.



Given an r by m integer matrix A, we define, for any prime p and nonnegative
integer 1,

Mi(A) = {x € Z™ : pix € rowy(A)}.
We have M (A) = rowy(A) and
Mo(A) € My (A) € My(A) C ...
Let
Ci(A) = M, (mod p).

That is, read al the integer vectors in M ;(A) to obtain C;(A). Then each C;(A) isa
p-ary linear code. Clearly,

Co(4) CCr(A) CCr(A) C ...

Theorem 5.1 Let D be a diagonal form for A, with diagonal entriesd 1, do, . ... Then
the dimensions of the p-ary code C'; (A) isthe number of diagonal entriesd; that are not
divisible by pi+1.

We may use a symmetric nonsingular metrix U over afield IF,, with p odd to intro-
duce anew inner product (-, -)¢; for row vectorsinF,,", namely

(a,c)y = alc'.
For alinear p-ary code C' C F};, the U-dual code of C'is
cY ={a:(acjy=0 fordl ceC}.

Itisstill true that the dimensions of C' and C'Y sum to n. In the theory of vector spaces
equipped with quadratic forms, a p-ary code is said to be totally i sotropic with respect to
U when C C CY. When U = I, totally isotropic is the same as self-dual. We may call
C self-U-dual when C = CY.

Theorem 5.2 (Witt) Given a symmetric nonsingular matrix B over afield F of odd char-
acteristic, there exists a totally isotropic subspace of dimensionm /2 in F™ if and only if
(—1)"™/2 det(B) isasquareinF.

Lemmab.3 Let L and M be integer matrices with L square so that LM is defined.
Supposedet (L) isrelatively primeto p. Then the invariant p-factorsof LM are the same
asthose of M.

In the proof, we show C;(LM) = C;(M) for dl 1.



Theorem 5.4 Suppose A isann by n integer matrix such that AUA T = p¢V for some
integer m, where U and V' are square matrices with determinants relatively prime to p.
Then C.(A) = F and

cY = Ce_j—q fori=0,1,...,e—1.

K3

Corollary 5.5 (i) Suppose H is a Hadamard matrix of order n and p a prime so that
p?/+1 exactly dividesn. Then C isa self-dual p-ary code. (i) Suppose C isa conference
matrix of order n andp a prime so that p2/+! exactly dividesn—1. Then C; isa self-dual
p-ary code.

Proof. (i) Takee = 2f + 1, U = I, V. = (n/p/)I in Theorem 5.4. For (ii), take
V=(n-1)/p/). O

Theorem 5.6 If there exists a conference matrix of order n = 2 (mod 4), thenn — 1 is
the sum of two squares. More generally, if there is a square integer matrix A of order
n =2 (mod4) sothat AAT = mI, then m isthe sum of two squares.

Proof. It is well known that an integer m is the sum of two squares if and only if no
primep = 3 (mod 4) divides the square-free part of m. If p divides the squarefree part
of m, Theorem ??ives us a self-dual code of length n = 2 (mod 4) and Witt’s Theorem
impliesthat —1 isasquarein I, whichimpliesp = 1 (mod 4). ]

6. Symmetric and quasi-symmetric designs

Theorem 6.1 (Lander [14]) Suppose there exists a symmetric (v, k, \)-design where n
isexactly divisible by an odd power of a prime p. Writen = p/nq (f odd) and A = p® X
with (ng, p) = (Ao, p) = 1. Then there exists a self-dual p-ary code of length v + 1 with
respect to the scalar product corresponding to

diag(1,1,...,1,—X) ifbiseven,
diag(1,1,...,1,n0Xo) ifbisodd.

Hence from Witt's Theorem,

—(=1)+tD/2)gisasquare (mod p) ifbiseven,
(=1)*tD/2p0 )\ isasquare  (mod p) ifbisodd.

The following theorem is only one part of results of Calderbank.

Theorem 6.2 (Calderbank) Let B be a 2-(v, k, A), and p be an odd prime that exactly
dividesr — \; further supposethat |A N B| = s (mod p) for any two blocks A and B of
the design. If v is odd, then —v(—1)(**+1)/2 isa square modulo p.

The proof constructs a self-U-dual code of length (v + 1)/2 where U =
diag(1,1,...,1, —v).

Blokhuis and Calderbank [2] have results on 2-(v, k, \) designs so that p ¢ exactly
dividesr — X\ and |[A N B| = s (mod p¢) for any two blocks A and B of the design.



7. The matrices of t-subsets ver sus k-subsets or ¢-uniform hypergaphs

By a (¢, v)-vector based on X, or just a ¢-vector if the set X is understood, we mean a
(row or column) vector whose coordinates are indexed by the ¢-subsets of an v-set X.
We often use functional notation: if f isat-vector and T" a t-subset of X, then f(7") will
denote the entry of f in coordinate position 7.

Forintegerst, k, v with0 < ¢t < k < v, let Wy, or W, denotethe () by (}) matrix
whose rows are indexed by the ¢-subsets of an v-set X, whose columns are indexed by

the k-subsets of X, and where the entry in row 7" and column K is

1 ifT CK,
Wa(T, K) = {O otherwise.

The question of whether there exist integer solutionsx of W, x = 1 isrelated to the
existence problem for ¢-designs. A simple ¢-(v, k, ) design consistsof aset X and a set
A of k-subsetsif X so that every t-subset of X iscontained in exactly A members of A.

Let u be the characteristic k-vector of aset A of k-subsets of X. This means that
u(A) =1if A € Aandotherwiseu(A) = 0. Then for a¢-subset T of X,

(Wau)(T) =Y u(A)Wi(4) = > 1=

A ACATCA

Thatis, (X, A) isat-designif any only if W,,u = A1 when here 1 isthe ¢-vector of all
1's. We alow not-necessarily-simple ¢-(v, k, A) designs where the members of .4 may
have multiplicities(or, A may be thought of asamultiset of £-subsets). These correspond
to k-vectors u of nonnegative integers satisfying W,u = A\1. Finaly, we may consider
signed ¢-designs, where k-subsets are counted with positive or negative multiplicities,
and these correspond to integer k-vectors u satisfying W, = 1.

The following theorem is from [10] and [21]. It is also a consegquence of Theorem
7.3.

Theorem 7.1 Let b be a ¢-vector of height () based on a v-set X. Necessary and suf-
ficient conditions for the existence of an integer /-vector u of height (7) based on X so
that WX = A1 are

(v—i)EO (mod (];:D) for i=0,1,...,¢. )

t—1

Systems of diophantine linear equations have come up repeatedly in work on the
asymptotic existence of decompositions of complete graphs (G-designs). Theorem 7.2is
from [22].

Theorem 7.2 Let G be a simple graph on k vertices and assume n > k + 2. Let G be
the set of all subgraphs of the complete graph K ,, that are isomorphic to G. There exists
afamily {z g : H € G} of integers z so that for every edge e of K,,,

Yoo am=1, (6)

H:ecE(H)



where the sumis extended is over those subgraphs G € G which contain the edge e, if
and only if (3) is divisible by the number of edges of G, and n — 1 is divisible by the
greatest common divisor of the degrees of the vertices of G.

The conditions that (7) is divisible by the number of edges of G, and n — 1 is
divisibleby the greatest common divisor of the degrees of the vertices of G are necessary
for the existence of a decomposition (a partition of the edges) of K, into subgraphs
isomorphic to G. Theorem 7.2 played an essential role in the proof given in [22] that,
given G, such decompositions exist for all sufficiently large integers n satisfying these
conditions. (Such decompositions may also be called GG-designs.) Similar theorems, but
about more complicated systems of equationsrelated to decompositions of ‘ edge-col ored
complete graphs’, may be foundinin[13] and [7].

A commonn generalization and extension of Theorems 7.1 and 7.2 is Theorem 7.3
below.

Given at-vector h based on a v-set X, we consider the matrix N;(h) or N; whose
columns are all distinct images of h under the symmetric group S,, acting on the ¢-
subsetsof X. So IV, has () rowsand at most n! columns. (For most purposes, it does not
meatter if NV, has repeated columns.) When h is the characteristic vector of the complete
t-uniform hypergraph K, whose hyperedges are all ¢-subsets of X, we have N; = Wi.
If t = 2 and h is he characteristic 2-vector of asimple graph G, then N, is the matrix of
the system of equationsin Theorem (6).

Theorem 7.3 Let b be a t-vector of height (%) so that the associated signed multihyper-
graph has at least ¢ isolated vertices. Necessary and sufficient conditions for the exis-
tence of an integer solutionx to N,x = b are

Wiub=0 (modg;) fori=0,1,...,¢t
where g; isthe gcd of all entries of W, N,.
Theorem 7.4 Let b be a t-vector of height () so that the associated signed multihyper-

graph has at least ¢ isolated vertices, and let g; be the gcd of all entries of W;, IV;. Then
one diagonal formfor N, has diagonal entries

(90)(D=(20) ) (g ()=G2a) 0 (gt

The proofs of Theorems 7.3 and 7.4 require concepts and results from the next sec-
tion.

8. Null designs (trades)

Integer k-vectorsin the null space of Wy, are called null designs or trades. I nteger bases
for the modules of null designs have been described by Graver and Jurkat [10], Graham,
Li, and Li [9], Frankl, Khosrovshahi and Adjoodani, and others.

Let M, be the module of integer row vectors that are orthogonal to the rows of
Wi_1.+ (Thesearenull (t—1)-designswith block sizet.) Let M, be amatrix whose rows



are a Z-basisfor M;. Aninteger t-vector h is primitive when the GCD of the entries of
M;h is 1. Here h is being thought of as a column vector.

The elements of al bases are of a certain type that were called (¢, k)-pods in [10]
and cross-polytopesin [9]. For our purposes, we need only to know the generating set
for theinteger null space of W, ;_1, and we restrict our attention to this case, and we use
the term ¢-pod.

Let P denote the choice of ¢ digjoint pairs

{al,bl},{ag,bg},...,{at,bt}, (7)

of points. Here the order of the ¢ pairsis not important, but the order of the two pointsin

each pair affectsthe signin 8 below. Let f » denlote the t-vector wherefp(7') = 0 unless
T contains exactly one point of each pair {a;,b;},i.e. T isa“transversa" for the pairs,
and otherwise

fp(T) = (_1)|Tﬂ{b1,b2,...,bn}|.

It iseasy to see that fp is orthogonal (with repect to the standard inner product) to
al rowsof Wy_1 4.

Theorem 8.1 Every integer ¢-vector in the null space of W;_, ; based on av-set, v > ¢,
isan integer linear combination of ¢-pods.

Theorem 8.2 Let h be a primitive ¢-vector. Then N;x = b has an integral solution

x if and only if N’x’ = b’ has an integral solution x’, where N’ = W;_; N, and
b’ = W;_1 b.

9. A zero-sum Ramsey-type problem

Givent and k with 0 < ¢ < k and aprime p so that (¥) = 0 (modp), let R(t, k; p)
denote theleast integer n > & so that if the ¢-subsets of any n-set X are colored with the
elements of F),, there is always some k-subset A of X such that the sum of the colors of
al (%) of thet-subsetsof A isQin F,.

Equivalently, R(¢, k; p) isthe least integer v > k so that no vector in the p-ary code
generated by the rows of Wy, is all-nonzero, i.e. there are no codewords of weight (Z)
In particular, R(t, k; 2) istheleast integer v > k sothat (1,1, ..., 1) isnotinthe binary
code generated by the rows of W,

If H isany ¢-uniform hypergraph and p a prime that dividesthe number of edges of
H,welet R(H; p) denote the least integer n so that for any coloring of the edges of the
t-uniform complete hypergraph K* with F,, there exists a subhypergraph H’ of K}* that
isisomorphicto H and such that the sum of the colors on the edges of H’ is0in F),. So
R(t, k,p) = R(KF;p).

Itisknownthat R(G;2) < k + 2 for any graph G with an even number of edgeson
k vertices [1], and that R(t, k,2) < k + ¢ whenever (%) is even [4]. We following two
theorems are proved in [27].



Theorem 9.1 For any ¢-uniform hypergraph H on & vertices with an even number of
edges,

R(H;2) <k+t.

Theorem 9.2 When (¥) iseven, R(t, k; 2) isequal to k -+ 2° where 2¢ isthe least power
of 2 that appearsin the base 2 representation of ¢ but not in the base 2 representation of
k.

(That ’j) is even implies that there are such powers of 2.) In particular, we have
R(t,k;2) =k + t whent isapower of 2, and R(¢, k; 2) < k + t otherwise.

10. Diagonal formsfor the matrices of 2-subsets ver sus subgraphsisomorphicto a
graph G

The results described in this section are joint work with Tony W. H. Wong.

Theorem 10.1 A simple graph G is primitive unless G is isomorphic to a complete
graph, an edgeless graph, a complete bipartite graph, or the digjoint union of two com-
plete graphs.

Theorem 10.2 Let G beaprimitivesimplegraph withm edgesand degrees 1, do, . . ., Oy,
Let h denote the ged of the degrees §; and m; let g denote the gcd of all differences
d; —0;,4,5 =1,2,...,n. Thentheinvariant factorsof N, (G, n) are

WE=m) (9" (me/)
The nonprimitive graphs may be considered separately. Here is one case.

Theorem 10.3 Let G be the complete bipartite graph K, ,,_,, where 2 < r < n — 2.
Define m, g, and h asin the statement of Theorem 10.2, so in this case

m=r(n—r), g=n-—2r, h=gcdr,n—r}
Then the diagonal entries of one diagonal formfor N, (G, n) are
(=2 @B w2977 (mg/h)".

In the case r = 2, the matrix N, is square; it is the adjacency matrix of the line
graph of the complete graph K,,. Theorem 10.3 is a generalization of result in[3].
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