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Abstract. The first part of these lectures introduces the Smith normal form and the
invariant factors of an integer matrix, and the relation of Smith form to systems of
linear diophantine equations. We give selected examples of how invariant factors
appear and may be applied to the theory of combinatorial designs. Importantly,
we may sometimes construct sefl-dual p-ary codes from hypothetical designs and
sometimes deduce the non-existence of designs from a theorem of Witt. In the
second part of the notes, we are concernedwith diagonal forms of various incidence
matrices arising from t-designs and t-uniform hypergraphs. Applications are given
to a certain zero-sum Ramsey-type problem involving t-uniform hypergraphs.

1. Introduction

In these lecture notes, we survey some appearances of Smith normal form (or invariant
factors, or elementary divisors) of integer matrices that arise in the theory of combina-
torial designs. We are also concerned with the p-ary codes that are generated by or arise
from integer matrices, for primes p.

The invariant factors, and hence the rank modulo a prime p, of a matrix A do not
change on row or column permutations of the rows and columns (or transpose). Thus
they do not depend on the ordering of the vertices when A is the adjacency matrix of a
graph G, or on the ordering of points and blocks or some incidence structure S. etc. Thus
the invariant factors of the adjacency matrix of a graph G, or the incidence matrix of S,
are invariants of G or S, respectively, and are also the same for two isomorphic graphs
or incidence matrices. So, for example, two graphs can be shown to be nonisomorphic
by showing that they have different invariant factors.

The simplest way to get a p-ary code from an integer matrix A is to take its row
space modulo p. The dimension of this code is the p-rank of A, and it is equal to the
number of invariant factors of A that are not divisible by p. A chain of p-ary codes
C0 ⊆ C1 ⊆ C2 ⊆ . . . may be defined so that the dimension of Cj is the number of
invariant factors of A that are not divisible by p j+1.

If A is the incidence matrix, or modified incidence matrix, of a hypothetical design,
it is sometimes possible to show that one of these codes is self-dual with respect to an
appropriate inner product. Witt’s theorem (see Section 5) may imply that a code with
these properties does not exist, in which case we may conclude that the hypothetical



design does not exist. Nonexistence results of this type are sometimes consequences of
the Hasse-Minkowski theory of rational congruence, but at other times may be proved
when the theory of rational congruence does not appear to apply. A self-dual binary code
of length 112 would arise from a hypothetical projective plane of order 10; in this case,
coding theory and extensive calculations by Lam and others shows that no such plane
exists; see [12].

Inclusion matrices of t-subsets verusus k-subsets, and, more generally, incidence
matrices of t-subsets and the t-uniform hypergraphs isomorphic to a given t-uniform
hypergraph H , are introduced in Section 7. Diagonal forms for the inclusion matrices
are described. The results of Section 7 are applied to the binary case of a zero-sum
Ramsey-type problem introduced by Alon and Caro [1] in Section 9. In Section 10,
we describe some recent joint work with Tony Wong on diagonal forms of the latter
incidence matrices, in particular when t = 2, and H is a simple graph.

Most proofs are omitted in this summary. Many will be supplied in the lectures or in
more extensive notes.

2. Smith and diagonal form

Given an r by m integer matrix A, there exist unimodular matrices E and F , of orders r
and m, so that EAF = D where D is an r by m diagonal matrix. Here ‘diagonal’ means
that the (i, j)-entry of D is 0 unless i = j; we do not require that D is square. We call
any matrix D that arises in this way a diagonal form for A.

Let the diagonal entries of D be d1, d2, d3, . . . . Here and in the sequel, di may be
interpreted as 0 if the index i exceeds the number of rows or columns. If all diagonal
entries di are nonnegative and di divides di+1 for i = 1, 2, . . . , then D is called the
integer Smith normal form of A, or simply the Smith form of A, and the integers d i are
called the invariant factors, or the elementary divisors of A. The Smith form is unique;
the unimodular matrices E and F are not.

As a simple example, let A =
(

3 1 4

4 −2 7

)
. We have

(
1 0
2 1

) (
3 1 4
4 −2 7

)⎛
⎝0 −1 3

1 −1 −1
0 1 −2

⎞
⎠ =

(
1 0 0
0 5 0

)

where the first and the third matrices are unimodular. Thus D =
(

1 0 0

0 5 0

)
is a diagonal

form of A.
Let s1, s2, . . . , sn be the invariant factors of a n by n integer matrix A. If A is

nonsingular, then snA−1 is integral. One way to see this is to use the formula

A−1 =
1

det(A)
Aadj

where Aadj is the classical adjoint of A, with (i, j)-entry (−1) i+j det(Aji) and where
Aji is the result of deleting row j and column i from A. The determinant det(Aji) is an
integer divisible by s1s2 · · ·sn−1 and det(A) = s1 · · ·sn.



3. Solutions of linear equations in integers

Diagonal forms are related to solutions of systems of linear equations or congruences in
integers. This, in fact, was the topic of H. J. S. Smith’s original paper on the subject.

Let A be an r by m integer matrix. Suppose EAF = D where E and F are unimod-
ular and D is diagonal with diagonal entries d1, d2, . . . . The system Ax = b is equivalent
to (AF )(F−1x) = b, and this has integer solutions x if and only if (AF )z = b has an
integer solution z. This in turn will have integer solution if and only if EAF z = Eb, or
Dz = Eb, has integer solutions.

In other words, if we let ei denote the i-th row of E, the system Ax = b has integer
solutions if and only if

eib ≡ 0 (mod di) for i = 1, 2, . . . , r. (1)

If the conditions (1) hold, then the integer solutions are easy to describe.
As a simple example,

(
1 0
2 1

) (
3 1 4
4 −2 7

)⎛
⎝0 −1 3

1 −1 −1
0 1 −2

⎞
⎠ =

(
1 0 0
0 5 0

)

and so the system of equations

3x + y + 4z = a
4x − 2y + 7z = b

has an integer solution if and only if 2a + b ≡ 0 (mod 5).

4. Square incidence matrices

The following two theorems are from Newman [16].

Theorem 4.1 Suppose A is an n by n integer matrix such that AA� = mI for some
integer m. Let s1, s2, . . . , sn be the invariant factors of A. Then sisn+1−i = m for
i = 1, 2, . . . , n.

Proof. If cA−1 is an integer matrix for some integer c, then the invariant factors of cA−1

are c/sn, c/sn−1, . . . , c/s2, c/s1. To see this, suppose EBF = D for some unimodu-
lar matrices E and F , where D = diag(s1, s2, . . . , sn) is the Smith form, of A, with
diagonal entries

s1 | s2 | · · · | sn. (2)

Then F−1(cA−1)E−1 = cD−1. That is, cD−1 is a diagonal form for cA−1. It is not
necessarily the Smith form, since the diagonal element c/si+1 divides c/si and not the
other way around. But the invariant factors of cA−1 in the correct order will be



c

sn
| c

sn−1
| · · · | c

s2
| c

s1
. (3)

If AA� = mI, then A� = mA−1 is integral and the invariant factors of A� are
those in (3) with c replaced by m. But the invariant factors of the transpose of a matrix
are the same as those of the orignal matrix, and so the factors in (2) are, by the uniquess
of the Smith form, identical to those in (3), with c replaced by m, and the result follows.
�

A Hadamard matrix of order n is an n by n matrix H , with entries +1 and −1 only,
so that HH� = nI. It is known that the existence of a Hadamard matrix of order n
implies n = 1, 2, or 4m for some integer m.

Theorem 4.2 If H is a Hadamard matrix of order n = 4t, and t is squarefree, then the
invariant factors of H are

(1)1, (2)2t−1, (2t)2t−1, (4t)1.

Proof. By Theorem 4.1, the invariant factors si of H satisfy sisn+1−i = n = 4t. Since
the entries of H are ±1, it is clear that s1 = 1, and since the 2-rank of H is 1, all invariant
factors of H are even except for the smallest, s1. For i ≤ n/2, si divides sn+1−i, so s2

i

divides 4t. Since t is squarefree, we conclude that si divides 2, and so is equal to 2 for
i = 2, 3, . . . , n/2. The theorem follows. �

A conference matrix of order n is an n by n matrix C , with 0’s on the diagonal and
non-diagonal entries +1 and −1 only, so that CC � = (n − 1)I. It is clear that the order
of a conference matrix, if greater than 1, is even.

Theorem 4.3 If C is a conference matrix of order n = 2t, and n − 1 is squarefree, then
the invariant factors of C are

(1)t, (n − 1)t.

Theorem 4.4 Suppose A is an n by n integer matrix such that AUA� = mV for some
integer m, where U and V are square matrices of order n with determinants relatively
prime to m. Let s1, s2, . . . , sn be the invariant factors of A. Then sisn+1−i = m for
i = 1, 2, . . . , n.

A (v, k, λ)-design consists of a v-set X (of points) and a family B of k-subsets
(called blocks) of X so that any two distinct points are contained in exactly λ of the
blocks. For background on designs, and proofs of the observations of the next two para-
graphs, see Chapter 19 of [15].

The incidence matrix N of such a design is the v by b matrix (here b = |B| =
λv(v − 1)/(k(k− 1)) is the number of blocks) with rows indexed by the elements of X,
columns indexed by the elements of B, and where

N(x, B) =

{
1 if x ∈ B,

0 otherwise.



It is well known that

NN� = (r − λ)I + λJ (4)

where r = λ(v − 1)/(k − 1) is the number of blocks that contain any given point. Here
I and J are v by v matrices, where I is the identity and J the matrix of all 1’s.

When |X| = |B|, i.e. v = b, the design is said to be a (v, k, λ)-symmetric design.
Here the incidence matrix is square of order v. We have r = k and a fundamental re-
lation λ(v − 1) = k(k − 1). It is clear that the sum of all rows of N is the row vec-
tor (k, k, . . . , k), and the sum of all columns of N is the transpose of this vector. The
equation (4) implies det(N) = ±n(v−1)/2k.

Theorem 4.5 (Deretzky [6]) Let N is the incidence matrix of a (v, k, λ)-symmetric de-
sign where k and λ are relatively prime, and write n = k − λ. The invariant factors of
N satisfy

s1 = s2 = 1, sisv+2−i = n for i = 3, 4, . . . , v − 1, and sv = nk.

5. Self-dual codes; Witt’s theorem

A p-ary linear code of length n is a subspace C of the vector space F
n
p of ordered n-

tuples of elements of the field Fp of p elements. Here p is a prime, and we normally think
of members of C and F

n
p as row vectors. All codes in these notes will be linear codes

over a prime field.
Given a p-ary code C , the dual code C⊥ is defined as the set of a ∈ F

n
p such that

〈a, c〉 = 0 for all c ∈ C . Here 〈a, c〉 is the standard inner product of the two vectors,
i.e. 〈a, c〉 = ac�. The dimensions dim(C) and dim(C�) sum to n. The code C is self-
orthogonal when C ⊆ C⊥, and self-dual when C = C⊥. A self-dual code of lenth n has
dimension n/2.

Given an r by m integer matrix A, we may consider the rows as vectors in F
m
p . The

row space rowp(A) of A over Fp is, of course, a p-ary linear code; C⊥ is the null space
of A over Fp. Multiplying a matrix on the right of left by a unimodular matrix does not
change its rank modulo p, so the dimension of C = rowp(A) is the rank modulo p of
a diagonal form D of A, and this is the number of diagonal entries of D that are not
divisible by p.

Self-dual codes may be obtained from certain Hadamard and conference matrices.
More generally, suppose AA� = mI for some n by n matrix A. Suppose p is a prime that
divides m. Then AA� = O over Fp, so rowp(A) is a self-orthogonal code. Now suppose
that p exactly divides m, i.e. p | m but p2 �| m. Let s1, s2, . . . , sn be the invariant factors
of A. By Theorem 4.1, sisn+1−i = m, so exactly one of si and sn+1−i is divisible by p.
It follows that the p-rank of A is n/2 and that row p(A) is a self-dual p-ary code.

The simplest case of Witt’s Theorem, Theorem 5.2 below, is that there exists a self-
dual p-ary code of length n, where p is an odd prime, if and only if (−1)n/2 is a square
in Fp. This says nothing if n ≡ 0 (mod 4) or if p ≡ 1 (mod 4), because this condition
is always true. But when n ≡ 2 (mod 4) and p ≡ 3 (mod 4), there is no self-dual p-ary
code of length n.



Given an r by m integer matrix A, we define, for any prime p and nonnegative
integer i,

Mi(A) = {x ∈ Z
m : pix ∈ rowZ(A)}.

We have M0(A) = rowZ(A) and

M0(A) ⊆ M1(A) ⊆ M2(A) ⊆ . . . .

Let

Ci(A) = Mi (mod p).

That is, read all the integer vectors in Mi(A) to obtain Ci(A). Then each Ci(A) is a
p-ary linear code. Clearly,

C0(A) ⊆ C1(A) ⊆ C2(A) ⊆ . . . .

Theorem 5.1 Let D be a diagonal form for A, with diagonal entries d 1, d2, . . . . Then
the dimensions of the p-ary code Cj(A) is the number of diagonal entries d i that are not
divisible by pj+1.

We may use a symmetric nonsingular matrix U over a field Fp with p odd to intro-
duce a new inner product 〈·, ·〉U for row vectors in Fp

n, namely

〈a, c〉U = aUc�.

For a linear p-ary code C ⊂ F
n
p , the U -dual code of C is

CU = {a : 〈a, c〉U = 0 for all c ∈ C}.

It is still true that the dimensions of C and C U sum to n. In the theory of vector spaces
equipped with quadratic forms, a p-ary code is said to be totally isotropic with respect to
U when C ⊆ CU . When U = I, totally isotropic is the same as self-dual. We may call
C self-U -dual when C = CU .

Theorem 5.2 (Witt) Given a symmetric nonsingular matrix B over a field F of odd char-
acteristic, there exists a totally isotropic subspace of dimension m/2 in F

m if and only if
(−1)m/2 det(B) is a square in F.

Lemma 5.3 Let L and M be integer matrices with L square so that LM is defined.
Suppose det(L) is relatively prime to p. Then the invariant p-factors of LM are the same
as those of M .

In the proof, we show Ci(LM) = Ci(M) for all i.



Theorem 5.4 Suppose A is an n by n integer matrix such that AUA� = peV for some
integer m, where U and V are square matrices with determinants relatively prime to p.
Then Ce(A) = F

n
p and

CU
i = Ce−i−1 for i = 0, 1, . . . , e− 1.

Corollary 5.5 (i) Suppose H is a Hadamard matrix of order n and p a prime so that
p2f+1 exactly divides n. Then Cf is a self-dualp-ary code. (ii) Suppose C is a conference
matrix of order n and p a prime so that p2f+1 exactly divides n−1. Then Cf is a self-dual
p-ary code.

Proof. (i) Take e = 2f + 1, U = I, V = (n/pf)I in Theorem 5.4. For (ii), take
V = ((n − 1)/pf). �

Theorem 5.6 If there exists a conference matrix of order n ≡ 2 (mod 4), then n − 1 is
the sum of two squares. More generally, if there is a square integer matrix A of order
n ≡ 2 (mod 4) so that AA� = mI, then m is the sum of two squares.

Proof. It is well known that an integer m is the sum of two squares if and only if no
prime p ≡ 3 (mod 4) divides the square-free part of m. If p divides the squarefree part
of m, Theorem ??ives us a self-dual code of length n ≡ 2 (mod 4) and Witt’s Theorem
implies that −1 is a square in Fp, which implies p ≡ 1 (mod 4). �

6. Symmetric and quasi-symmetric designs

Theorem 6.1 (Lander [14]) Suppose there exists a symmetric (v, k, λ)-design where n
is exactly divisible by an odd power of a prime p. Write n = pfn0 (f odd) and λ = pbλ0

with (n0, p) = (λ0, p) = 1. Then there exists a self-dual p-ary code of length v + 1 with
respect to the scalar product corresponding to

U =

{
diag(1, 1, . . . , 1,−λ0) if b is even,

diag(1, 1, . . . , 1, n0λ0) if b is odd.

Hence from Witt’s Theorem,{
−(−1)(v+1)/2λ0 is a square (mod p) if b is even,

(−1)(v+1)/2n0λ0 is a square (mod p) if b is odd.

The following theorem is only one part of results of Calderbank.

Theorem 6.2 (Calderbank) Let B be a 2-(v, k, λ), and p be an odd prime that exactly
divides r − λ; further suppose that |A ∩ B| ≡ s (mod p) for any two blocks A and B of
the design. If v is odd, then −v(−1)(v+1)/2 is a square modulo p.

The proof constructs a self-U -dual code of length (v + 1)/2 where U =
diag(1, 1, . . . , 1,−v).

Blokhuis and Calderbank [2] have results on 2-(v, k, λ) designs so that p e exactly
divides r − λ and |A ∩ B| ≡ s (mod pe) for any two blocks A and B of the design.



7. The matrices of t-subsets versus k-subsets or t-uniform hypergaphs

By a (t, v)-vector based on X, or just a t-vector if the set X is understood, we mean a
(row or column) vector whose coordinates are indexed by the t-subsets of an v-set X.
We often use functional notation: if f is a t-vector and T a t-subset of X, then f(T ) will
denote the entry of f in coordinate position T .

For integers t, k, v with 0 ≤ t ≤ k ≤ v, let Wtk or W v
tk denote the

(
v
t

)
by

(
v
k

)
matrix

whose rows are indexed by the t-subsets of an v-set X, whose columns are indexed by
the k-subsets of X, and where the entry in row T and column K is

Wtk(T, K) :=

{
1 if T ⊆ K,

0 otherwise.

The question of whether there exist integer solutions x of W tkx = 1 is related to the
existence problem for t-designs. A simple t-(v, k, λ) design consists of a set X and a set
A of k-subsets if X so that every t-subset of X is contained in exactly λ members of A.

Let u be the characteristic k-vector of a set A of k-subsets of X. This means that
u(A) = 1 if A ∈ A and otherwise u(A) = 0. Then for a t-subset T of X,

(Wtku)(T ) =
∑
A

u(A)Wtk(A) =
∑

A∈A,T⊆A

1 = λ.

That is, (X,A) is a t-design if any only if Wtku = λ1 when here 1 is the t-vector of all
1’s. We allow not-necessarily-simple t-(v, k, λ) designs where the members of A may
have multiplicities (or, Amay be thought of as a multiset of k-subsets). These correspond
to k-vectors u of nonnegative integers satisfying W tku = λ1. Finally, we may consider
signed t-designs, where k-subsets are counted with positive or negative multiplicities,
and these correspond to integer k-vectors u satisfying Wtk = 1.

The following theorem is from [10] and [21]. It is also a consequence of Theorem
7.3.

Theorem 7.1 Let b be a t-vector of height
(
v
t

)
based on a v-set X. Necessary and suf-

ficient conditions for the existence of an integer k-vector u of height
(
v
t

)
based on X so

that Wtkx = λ1 are(
v − i

t − i

)
≡ 0 (mod

(
k − i

t − i

)
) for i = 0, 1, . . . , t. (5)

Systems of diophantine linear equations have come up repeatedly in work on the
asymptotic existence of decompositions of complete graphs (G-designs). Theorem 7.2 is
from [22].

Theorem 7.2 Let G be a simple graph on k vertices and assume n ≥ k + 2. Let G be
the set of all subgraphs of the complete graph Kn that are isomorphic to G. There exists
a family {xH : H ∈ G} of integers xG so that for every edge e of Kn,

∑
H:e∈E(H)

xH = 1, (6)



where the sum is extended is over those subgraphs G ∈ G which contain the edge e, if
and only if

(
n
2

)
is divisible by the number of edges of G, and n − 1 is divisible by the

greatest common divisor of the degrees of the vertices of G.

The conditions that
(
n
2

)
is divisible by the number of edges of G, and n − 1 is

divisible by the greatest common divisor of the degrees of the vertices of G are necessary
for the existence of a decomposition (a partition of the edges) of Kn into subgraphs
isomorphic to G. Theorem 7.2 played an essential role in the proof given in [22] that,
given G, such decompositions exist for all sufficiently large integers n satisfying these
conditions. (Such decompositions may also be called G-designs.) Similar theorems, but
about more complicated systems of equations related to decompositions of ‘edge-colored
complete graphs’, may be found in in [13] and [7].

A commonn generalization and extension of Theorems 7.1 and 7.2 is Theorem 7.3
below.

Given a t-vector h based on a v-set X, we consider the matrix Nt(h) or Nt whose
columns are all distinct images of h under the symmetric group Sn acting on the t-
subsets of X. So Nt has

(
v
t

)
rows and at most n! columns. (For most purposes, it does not

matter if Nt has repeated columns.) When h is the characteristic vector of the complete
t-uniform hypergraph K t

v , whose hyperedges are all t-subsets of X, we have Nt = Wtk.
If t = 2 and h is he characteristic 2-vector of a simple graph G, then N2 is the matrix of
the system of equations in Theorem (6).

Theorem 7.3 Let b be a t-vector of height
(
v
t

)
so that the associated signed multihyper-

graph has at least t isolated vertices. Necessary and sufficient conditions for the exis-
tence of an integer solution x to N tx = b are

Witb ≡ 0 (mod gi) for i = 0, 1, . . . , t

where gi is the gcd of all entries of WitNt.

Theorem 7.4 Let b be a t-vector of height
(
v
t

)
so that the associated signed multihyper-

graph has at least t isolated vertices, and let g i be the gcd of all entries of WitNt. Then
one diagonal form for Nt has diagonal entries

(g0)(
n
t)−( n

t−1), (g1)(
n

t−1)−( n
t−2), . . . , (gt)1.

The proofs of Theorems 7.3 and 7.4 require concepts and results from the next sec-
tion.

8. Null designs (trades)

Integer k-vectors in the null space of Wtk are called null designs or trades. Integer bases
for the modules of null designs have been described by Graver and Jurkat [10], Graham,
Li, and Li [9], Frankl, Khosrovshahi and Adjoodani, and others.

Let Mt be the module of integer row vectors that are orthogonal to the rows of
Wt−1,t. (These are null (t−1)-designs with block size t.) Let Mt be a matrix whose rows



are a Z-basis for Mt. An integer t-vector h is primitive when the GCD of the entries of
Mth is 1. Here h is being thought of as a column vector.

The elements of all bases are of a certain type that were called (t, k)-pods in [10]
and cross-polytopes in [9]. For our purposes, we need only to know the generating set
for the integer null space of Wt,t−1, and we restrict our attention to this case, and we use
the term t-pod.

Let P denote the choice of t disjoint pairs

{a1, b1}, {a2, b2}, . . . , {at, bt}, (7)

of points. Here the order of the t pairs is not important, but the order of the two points in
each pair affects the sign in 8 below. Let fP denlote the t-vector where fP (T ) = 0 unless
T contains exactly one point of each pair {ai, bi}, i.e. T is a “transversal" for the pairs,
and otherwise

fP (T ) = (−1)|T∩{b1,b2,...,bn}|.

It is easy to see that fP is orthogonal (with repect to the standard inner product) to
all rows of Wt−1,t.

Theorem 8.1 Every integer t-vector in the null space of Wt−1,t based on a v-set, v ≥ t,
is an integer linear combination of t-pods.

Theorem 8.2 Let h be a primitive t-vector. Then Ntx = b has an integral solution
x if and only if N ′x′ = b′ has an integral solution x ′, where N ′ = Wt−1,tNt and
b′ = Wt−1,tb.

9. A zero-sum Ramsey-type problem

Given t and k with 0 ≤ t ≤ k and a prime p so that
(
k
t

) ≡ 0 (mod p), let R(t, k; p)
denote the least integer n ≥ k so that if the t-subsets of any n-set X are colored with the
elements of Fp, there is always some k-subset A of X such that the sum of the colors of
all

(
k
t

)
of the t-subsets of A is 0 in Fp.

Equivalently, R(t, k; p) is the least integer v ≥ k so that no vector in the p-ary code
generated by the rows of Wtk is all-nonzero, i.e. there are no codewords of weight

(
v
k

)
.

In particular, R(t, k; 2) is the least integer v ≥ k so that (1, 1, . . . , 1) is not in the binary
code generated by the rows of W v

tk.
If H is any t-uniform hypergraph and p a prime that divides the number of edges of

H , we let R(H ; p) denote the least integer n so that for any coloring of the edges of the
t-uniform complete hypergraph Kn

t with Fp, there exists a subhypergraph H ′ of Kn
t that

is isomorphic to H and such that the sum of the colors on the edges of H ′ is 0 in Fp. So
R(t, k, p) = R(Kk

t ; p).
It is known that R(G; 2) ≤ k + 2 for any graph G with an even number of edges on

k vertices [1], and that R(t, k, 2) ≤ k + t whenever
(
k
t

)
is even [4]. We following two

theorems are proved in [27].



Theorem 9.1 For any t-uniform hypergraph H on k vertices with an even number of
edges,

R(H ; 2) ≤ k + t.

Theorem 9.2 When
(
k
t

)
is even, R(t, k; 2) is equal to k + 2e where 2e is the least power

of 2 that appears in the base 2 representation of t but not in the base 2 representation of
k.

(That
(
k
t

)
is even implies that there are such powers of 2.) In particular, we have

R(t, k; 2) = k + t when t is a power of 2, and R(t, k; 2) < k + t otherwise.

10. Diagonal forms for the matrices of 2-subsets versus subgraphs isomorphic to a
graph G

The results described in this section are joint work with Tony W. H. Wong.

Theorem 10.1 A simple graph G is primitive unless G is isomorphic to a complete
graph, an edgeless graph, a complete bipartite graph, or the disjoint union of two com-
plete graphs.

Theorem 10.2 Let G be a primitive simple graph withm edges and degrees δ1, δ2, . . . , δn.
Let h denote the gcd of the degrees δi and m; let g denote the gcd of all differences
δi − δj , i, j = 1, 2, . . . , n. Then the invariant factors of N2(G, n) are

(1)(
n
2)−n, (h)1, (g)n−2, (mg/h)1 .

The nonprimitive graphs may be considered separately. Here is one case.

Theorem 10.3 Let G be the complete bipartite graph Kr,n−r , where 2 ≤ r ≤ n − 2.
Define m, g, and h as in the statement of Theorem 10.2, so in this case

m = r(n − r), g = n − 2r, h = gcd{r, n− r}.

Then the diagonal entries of one diagonal form for N 2(G, n) are

(1)n−2, (2)(
n
2)−2n+2, (h)1, (2g)n−2, (mg/h)1 .

In the case r = 2, the matrix N2 is square; it is the adjacency matrix of the line
graph of the complete graph Kn. Theorem 10.3 is a generalization of result in [3].
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