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Abstract. Quantum jump codes were introduced by Alber et al. (2001). Quantum
jump codes have a close connection with combinatorial designs calB&ED
(t-spontaneaus emission error design). In this paper, we give a brief survey of a
guantum jump code together with some new results. Firstly, fundamental properties
of at-error correcting quantum jump code are described. Secondly, a few examples
of jump codes are given and an upperbound of dimension of a jump code with
a fixed length and given error correcting ability is shown. Moreover, a relation
between an-SEED and a jump code is discussed and various constructions of
t-SEEDs are given.

Keywords. quantum jump codée;SEED, large set

Introduction

Quantum error correcting codes have been studied by many authors [9,11,14,29,30] mo-
tivated by the pioneering work by Shor [28]. Among them, Aleel. [1] introduced
quantum jump codes which correct errors caused by quantum jumps. Quantum jump
codes have a close connection with combinatorial designs ¢a&ED (-spontaneaus
emission error design).

In this paper, we give a brief survey of a quantum jump code together with some
new results. In Sections 1 and 2, a breif introduction to a quantum jump code is given.
In Section 3, a few examples of jump codes are shown and in Section 4, an upperbound
of dimension of a jump code with a fixed length and given error correcting ability is ex-
plained. In Section 5, a non-existence result for a special parameter is shown. Moreover,
in Section 6 a connection between-SEED and a jump code is discussed. Finally, in
Section 7, various constructions®eSEEDs are given.

1. Quantum codes

We begin with the introduction of quantum error correcting codes.

1Corresponding Author: Masakazu Jimbo, E-mail: jjmbo@is.nagoya-u.ac.jp



1.1. Quantum state

A quantum state for a single particle can be represented by a vector in a finite dimensional
Hilbert space#t, that is, a vector space with inner product. In this paper we{setC?,
whereC is the set of complex numbers. A quantum state of a single quantum system
like a photon is represented ly), called aket vectoy which is a 2-dimesional vector
in H = C2. The unit of the information amount for a single quantum system is called a
qubit In particular,|0) = H and|1) = m
linear combinationguperpositiohof these two pure states, that|is) = «|0) 4+ 3|1) for
a, 8 € C. We define dra vector(p| = |¢)T, where|p)T is the tanspose of the complex
conjugate of ). Then the inner product df) and|v) is written by the notatioryp|v))
and the size of a state vectar) is written by \/{¢|e).

In the field of quantum information, any stdte) and its scalar multipler|¢) (o #
0) are identified as the same quantum state. Hence, without loss of generality, we assume

{lp) = 1.
A joint state ofn-qubits is of the form

are calledbure statesind any statép) is a

lo) = P12 @n) = |01) @ |@2) ® - ® |pn),

where® is the tensor product. In this cage,) is a2"-dimensional vector irH®" =
HOH®- - -@H.

LetF ={0,1} andF™ = F x --- x F. Thenfor anyx = (x1,x2,...,x,) € F",
) = |z1) ® |z2) ® --- ® |z,) are pure states for-qubits and thes@” vectors in
{|z) : & € F"} form an orthonormal basis 8{®". Any n-qubit state can be represented

by [¢) = Y qe e aal).
1.2. State Transition

For any quantum state) € H®", a state transition can be represented by a linear oper-
ator. In a quantum computation or quantum data transmission, information is stored as a
guantum state of an-qubit system. Quantum computation can be pursued by applying
suitable unitary operators. However, in these computation or data transmission system,
we can not avoid the occurence of errors or noises caused by the interaction with envi-
ronment. Because of the noise, the information stored in a quantum system may include
some error. Errors or noises are also considered as operators. Typical unitary operators
for a single qubit are

01 10 0—2
O—X:|:10:|; JZ:|:O_1:|7 O—Y:|:Z- O:|7

wherei = /—1.

In order to correct such errors, we need to apply (inverse) unitary operators. But
unlike to the classical data strage, we can not observe the quantum state of the system.
Hence, we need to correct the quantum state by utilizing some partial information like
an eigenvalue of a measurement, or by observing changes of outside of the system.



1.3. Quantum error correcting codes

Let C be a subspace ofi®" and £ be a set of error operators including the identity
operator. We assume that only the errorgiaccur in a quantum systergi.is called an
E-error correcting quantum code§ for any |c) € C andE € &, we can recover the
original statdc) utilizing a partial information oF|c) obatined by measurement without
knowing the original statg).

For an&-error correcting quantum codg the following theorem is known.

Theorem 1 (Knill and Laflamme [23]) A subspac&€ < H®" with orthonormal basis

{le;) =i =1,...,m} is a quantume€-error correcting code if and only if the following
holds:

<Ci|EIE2|Cj> = 5ij/€E1,E27 for anyi,j, andEl, E2 S 5, (1)
where

1, ifi=yj,

5ij = o .

0, ifi#j,

andkg, g, is a constant depeding only diy and Es.
Example2Letn = 2andé = {I® I,E = I ® ox}. Then,C = (]00),|11))
is an £-error correcting quantum code, sindg|00) = [01), E|11) = |10) implies

(00|ETE|11) = 0, (00|E[11) = 0, (00|E|00) = (11|E|11) = 0, (00|ETE|00) =
(11|ETE|11) = 1, which satisfies the condition (1).

2. A quantum jump code

2.1. A decay operator and a jump operator

In this paper, we treat errors caused by spontaneous emission. Quantum state is changed
according as the spontaneous emission by the loss of energy. In this case, there are two

kinds of errors, that is, quantum decay and quantum jumguantum decay operatas
represented by

=[01] 10 [00]

00 01

wheret is a time variable and is a decay rate. Then, far= 0, 1,

o) = o] +<7# [04] ) 1o =210 @

holds.



Assume that spontaneous decay occurs to each qubit with the same decay rate. Then
the decay operator for-qubit quantum state is defined By (t) = D(t)®- - -® D(t) =
D(t)®". For anyz = (z1,%2,...,2,) € F", we have

®D )zi) = e WHT)F | z), ©)

where wtx) is the Hamming weight at, that is, the number of nonzero elements:in
On the other hand quantum jump is defined as follows: Let

a=al= ool

then thequantum jump operatdor a single qubit is defined by

i i
ﬂ@:{AW,IHmAM@¢& @

) if (¢|ATAlg) = 0.

Thus, we have

810}, if B#0,

NM®+ﬁM)ﬁm 50

Remark: In Alber et al.[2], a jump operator is defined by

1
Jp) = —F———=—=A4]9).
0= e

Hence, in the case &p) = |0), by setting|y) = 0|0) + £1|1), (Jeo|® + |e1]?> = 1), we
should consider it as

1
JI0) = lim ————x=A|p) = |0).
e1——=0 /(@] AT Alp)

In this paper, we ignore the normalizing denominagéfe| AT Ajp) and instead we de-
fined that any state vectgp) is identified with its scalar multiple in Subsection 1.1.

In the case ofi-qubit system, a jump operator at ti#h position is defined by
=1l --IJ®Il -1

Let V = {1,2,...,n} and Ly be the set of lists of the elements th C V. If
jump error operators/;,,...,J;,_,,J;, are applied in turn to a quantum state,
such multiple jump is represented by = Ji Ji._, - Jiy, for E = (iy,--- ,is) €
Lg. In general, jump operators, , ..., st_l,Jls are not commutative. For example,



J2J1(]101)+]010)) = |001), whereas/; J>(|101)+]010)) = |000). However, for a state
|c), by deleting jump operataf;,’s which do not change the stafg _, - - - J;, |c) we can
get a subsequence of operatdig = J;;, ---J;, , whereE. = (ij;,,--- ,i;.) C E.
HenceJg|c) = Jg |c) holds for the statdc) = > ... az|z) and there arec’s
such thatag: # 0 and suppr) O E. hold, where supfx) = {i : z; # 0} for
x = (x1,...,2,). Moreover, the operators iy, are commutative when it is applied
to |¢). Hence, for a multiple jump operatdi; and a statéc), we have only to consider
multiple jump operators which are commutative with respedtitoNow, for a subsef,
of V, when the jumps at positions ifi are commutative fofc), we denote it by

- I ifi¢FE
J == Ai, Alz . ’
B @ {J it i E.

The position where a quantum jump occured can be detected by the continuous
monitoring of photodetector since a photon is radiated when a quantum jump occured at
a qubit (see Figure 1). Hence, we assume that the positions where quantum jumps occur
are known (see, Albest al.[2]).

a quantum jump
— _
—~

n qubits a photon

 —
photodetector

Figure 1. A quantum jump and photodetector

In general, a decay and jump process is written as

Dv(ts) . Jib, . Dv(tsfl) . Ji ----- Dv(tl) . Jil -Dv(to).

s—1

That is, as it is shown in Figure 2, within a time perigdspontaneous decay occurs
to each qubit with the same decay rate and among the period quantum jumps<ccurs
times.

ty t, t. t,

ol T (K
jump at i;-th jum.p. at i,-th jurgp.at izi-th jump at i-th
0 position position position position

Figure 2. Decay and jump process



2.2. Decoherence-free subspace for decay operator

Our aim in this paper is to construct a code which can correct errors caused by quantum
decay and quantum jumps. For quantum decay error, we apply a passive error correction,
that is, we consider the error-free space caused by spontaneous decay error operator
Dy (t).

Hence, we find a subspa®® in which every quantum state vector is invariant with
respect to the state transition @y (¢). A subspacdV is called adecoherence-free
subspacéf Dy (t)|¢) = a|e) holds for anyl¢) € W, wherea is a nonzero constant.

Now, let 7' = {x € F" : wt(z) = k} and letW), =< |z) : * € F]' > be a
subspace which is spanned fiy) : @ € 7' }.

Lemma 3 W is a decoherence-free subspace with respect to a decay opevatty) if
and only ifW is a subspace diV;, for an arbitrary fixed weight:.

Proof. Forany|p) = > pcrn azlz) € W,

Dyv(H)e) = > oDy (b))
TeFn
= Z ag)e*\m(w)%thﬁ
reFm

S Y e

k=0 TcFp

holds. In order thaDy (t)|p) = const.|¢) holds for anyt, weightk must be constant,
which prove the lemma. O

Hence, any quantum jump codemust be in a subspace @f;, for somek to ignore
the quantum decay error. Furthermore, for a quantum gtate W, and a jump operator
Jg, Jg|c) € Wi holds for some’ < k.

2.3. Quantum jump codes

If we want to find an é-error correcting” quantum jump code as a subspad&gfthen
we have only to consider error operators of the form

EZ{JEZEE£U,UCK|E‘§€}.

In quantum jump codes, it is assumed that the positibns- (i1, 2, ...,4s) Of
quantum jump occured are known by the continuous observation of photodetector as it
was stated in Section 2.1. Note that if the error positions are known, the conditions (i)
and (ii) in Theorem 1 are simplified as

(ci| T} Jglej) = diyrp  foranyi# jandJg € &, (5)

wherek g is a nonzero constant depending onlyion
A subspace ofV, satisfying (5) is called an-error correcting quantum jump code
denoted by aiin, m, ), jump codewherem is the dimension of.



3. Examples ofl- and 2-error correcting quantum jump codes
3.1. A l-error correcting quantum jump code of length four

Here, we consider an example of 1-error correcting quantum jump codes of length four.
LetC be a 1-error correcting quantum jump code. A codewords represented by

o)=Y azlz)

xTeFy

for some fixed weighk, 0 < k& < 4.
Now, let

{¢; = Z ag)|w> :i=1,2,...,m}
TeFy
be an orthonormal basis 6f Since,(c;|c;) = d;;,

3 alad) =4 (6)

xTeF}

holds for each andj, and for a fixedk € {0,1,...,4}, wherea(a? is the complex
conjugate ohg).
Similarly,

Jey = > a@ ey = Y oy |Pw),

TeF;: TeFlz=1

wherePF; is the4 x 4 diagonal matrix whose diagonal elements are 1 except fof-the
element being 0. Hence,

(il I Tdey = Y aoil) =dimeen (7)

TeF}zp=1

holds for each, j and?¢ € V, wherexy, (1 is a nonzero constant depending only/on
and/.
Hence, (6) and (7) can be rewrited as

Z ayal) =6k (8)
TeFize=1

> ayal) =6k )
TeF} zp=0

for anyi, j and/.
Hence, we can easily see that the weighif the decoherence-free subspate
must be2, since



0‘(()10)00 =0, O‘(()10)01 = 0‘(()10)10 = 0‘011)00 = O‘510)00 =0,

agzl)ll =0, Ofgll)m = a111)01 = 0‘110)11 = a(()l1)11 =0
hold by (8) and (9).
Moreover we have the following equations for argnd; by (8) and (9):

—(i) () —(i) _(4) () () _
@1100%700 T X1010%1010 T X001 X001 = 0ijFk,1,15
—(1) () —(1) _(4) —(1) () _
11007100 T 011090110 T X0101%101 = 0ijKk,2,15

—(1) () —(1) _(4) —() () _
@010 010 T Qoi10%0110 T X011 %011 = 0ijFk,3,15

OB —(1) _(4) () G _
10017001 T Xo101%101 T X011 %0011 = 0ijFk,4,15

—() () —(1) _(4) —() () _
@o011%011 T Q0101101 T Xo110%0110 = 9ijKk,1,05

—(i) _(J) —(i) _(4) —() () _
011011 T X1001 %7001 T F010%7010 = 0ijKK,2,05

—() () —(1) _(4) —(&) () _
1017101 T O1001%7001 T X1100%1100 = 9ijFk,3,05

aé?1oaéj1)1o + a(110)100‘90)10 + ag?ooagjl)oo = 0ijKk,4,0-

By solving these equations for= j, we can find the following relations:

|04§Z1)00| = |O‘EJZO)11| = wgz)’ |04§Z0)10| = |O‘EJll)01| = wél)a |04510)01| = |O‘gll)10| = w:(sl),
) 2 2
w4 wi” +wi” = const. (10)
Moreover, in the case af#£ j, we have
ag?ooagjl)oo = 5631104(()]0)11, aglo)loa%)m = a(()11)010‘8]1)011 agzo)ma%)ol = a5)11)100‘5{1)107
a(111)000‘5]1)00 + aglo)looéjo)lo + a(110)010490)01 =0. (11)

A solution satisfying (10), (11) can be obtained as follows:
|ci) = win|h1) + wizlha) + wis|hs)

fori =1,2,3, where
|h1) = |1100)+€™1[0011), |hg) = [1010)+€?2|0101), |h3) = [1001)+¢%2|0110)
and

U111 U12 U13

U = | u21 uzz ua3
U31 U32 U33

is a unitary matrix. In particular, lét; = 0 for any: and letU = I, then



le) = [1100) + [0011), |eo) = [1010) 4 [0101), |e) = |1001) + |0110)

is an example of a 1-error correcting quantum jump code of length 4.

It is easy to show that the codewith an orthonormal basis (ONB)c1), |c2), |¢3)}
has the maximum dimension. In fact, as we saw that any 1-error correcting jumg code
of length 4 is a subspace of a space spanneflb)x € F;}. Moreover, after a jump
error J; occured,/,C still has to have the same dimension withbecauseJ/,|c;) must be

orthogonal for any. Let ¢ be a position where a codewold ) = Emefg ag) |z) has a
term tha’rag) # 0 andx has 1 in the positio#. In this case(c1|Jng\c1) < {erler) = 1.
Since<ci|J;J¢|cZ-> = <c1|Jng\cl> holds for anylc;) = Zwefg oz:(é) |z), there must be a

vector|x) such thatx) has 1 at positiord andagz.) # 0. Thus,J,C is spanned by the ket
vector whose weight is one and = 0. There are three such vectors of weight 1 whose
¢-th element is 0. Thus di@ < 3 holds.

3.2. An example of 2-error correcting quantum jump codes of length 6

Here, we consider an example of 2-error correcting quantum jump codes of length 6.
LetC be a 2-error correcting quantum jump code. And let

{¢; = Z ag)|x>:z’:1,2,...,m}

TeFp

be an orthonormal basis 6f
Let E = {¢1,¢2} be the set of positions where jump errors occur. If there are some

« such that supfe) D F andag) # 0, we have

Jpley = > al) Jplx)
TeFy

= Z ag)\PEw%

TeF xp=liorleE

where Py, is the6 x 6 diagonal matrix whose diagonal elements are 1 except for the
positions inE being 0. Hence,

(il JhTEle;) = > ay oy =6k, (12)
TeFP zy=lforleE

wherek g is a nonzero constant depending only/on

By (12), it is shown thaty(af.) = 0 for any x with wt(x) = 0, 1,2,4,5,6. Thus, in
this case a decoherence-free subspabisis

The following is an example af6, 2, 2)s jump code.

Example 4 A (6,2, 2)3 jump code is given by the following orthonormal basis:



1
c1) = —=(|111000) + [101100) + |100110) + [100011) + [110001
len) = 75 )+ | )+ | )+ | )+ )

+ (011010 + |001101) 4 [010110) -+ [001011) + |010101)),

1
= ——(|000111) +]010011) + [011001) + |011100) + [001110
le2) = 5l )+ )+ )+ )+ )

+]100101) + [110010) + [101001) + [110100) + [101010)).

It can be checked that (12) holds for ahyC V, |E| < 2. For example, letZ = {1, 2},
then

Jele1) = ——(]001000) + [000001)) and

- 8-
(e

Jplcz) = ——(]000010) + [000100))

5

hold, which imply thatc;|J}. Jp|c;) = & fori = 1,2 and (¢1|J}, Jp|c2) = 0. Similarly,
for any E with two elements/g|c;) consists of two basis ket vectors. Also, for d@ny
with a single element, it consists of five basis vectors. These facts implies that

ifi =jand|E| =2,
ifi=jand|E| =1,
ifi=jandFE = ¢,
if i £ j.

(cil ThTBle;) =

O == o=

Remark: As you will see laterc;) and|cz) are derived from two disjoint2-(6, 3, 2)
designs”, which include all triples froi.

4. An upper bound for the dimension of jump codes

In this section, fundamental properties of @) m, e); jump code are described. Most
of the results in this section, we refer the reader to Betl. [8].

For a vectorr = (x1,29,...,2,) € F* andE = {l1,ls,..., ¢}, letT = (1 —
1,1 —xo,..., 1 —x,)andx|g = (z¢,, T4y, ..., %0, ).

Lemma 5 LetC be an(n,m, t);, jump code. Then for an¥, with |E| = s < ¢, and for
anyy € F*, we obtain

Z ag)a%) = 5ij/€E,y~ (13)
TEFD T|p=Y

Proof. In the case ofy = (1,1,...,1) € F* for s < t, (13) is ovbious by (5). We
prove it by induction for the weight ofy. For E C V such thatlE| = s < ¢t and a

vectory € F* with weightw < s, without loss of generality, we assume that the first
elements aré and the othes — w elements ar@. Let Ey = {i : y; = 1} and we define



P )
TEFTE=Y

Then,

N((an):N(EOalw)f Z N(Ea(]-waz))
zeFs—w z=20

holds. In the case when= j, each term in the right hand side of the above equation is
constant by the induction assumption. Similarly, whe#f j, each term in the right hand
side is 0, hence the lemma is proved. O

The following lemma is a direct consequence of Lemma 5.

Lemma 6 (Bethet al.[8]) If Cisan(n,m,t) jump code, thea$"Cisan(n,m, t),—x
jump code.

Lemma 7 (Bethet al.[8]) If an (n,m,t); jump code exists fok > ¢ > 1, then an
(n —1,m,t —1)—1) eXists.

Proof. The lemma can be obtained by applying an error opertao the (n, m,t)x
jump codeC. Note that if{|c;) : ¢ = 1,...,m} is an othonormal basis thgi/,,|c;) :
i=1,...,m} is also an othonormal basis. O

Lemma 8 (Bethet al.[8]) If an (n,m,t); jump code exists fok > ¢ > 1, then an
(n+1,m,t); jump code and afn + 1,m, t),4+1 jump code exist.

Proof. Appending|0) or |1) to a an(n,m,t); jump code, an(n + 1,m,t); or an
(n+ 1,m,t)r+1jump code can be obtained, respectively.

The following upperbound is obtained by Bethal. [8].

Proposition 9 (Bethet al.[8]) The dimensiomn of a (n, m,t); jump code is bounded

by
pewf(T) O (at) e

Proof. It is ovbious that(n,m,0), jump code has dimension dif, = (}). If C is
an(n,m,t); jump code, then by Lemma 7,.B:C is an(n — t,m, 0);_; jump code for
E CV,|E| =t.Hence, dinC < (}f). Also, by Lemma 6, afin, m, t),,_s jump code

exists, hence afth — t, m, 0),,—r_; jump code exists, which means dn< (n’j;t_t) =

("c)- O
Lemma 10 (Bethet al.[8]) An(n,m,1); jump code attaing the upperbound (14) exists

H _ 1
for any even integen. In the casek = 2 andm = 5(}).



Proof. Let|cg) = %(W + [x)) foranyx € F", wt(x) < %. Then, The cod€ with

orthonormal basig|cz)} has dimensiom: = (). And

1 I
Jeg) = | Va1 i€ supR),
ﬁ|w>7 if i ¢ supgx)

holds. Hence{cm|JJJi|cm/> = %%w which prove the lemma.

5. Non-existence of 46, 3, 2)3 jump code

By the upperbound (14), we have dén= m < 4 for an (6, m,2)s jump codeC.
Moreover, Bettet al. [8] showed that there does not existta4, 2); jump code.
Here we show that there does not exi$6a3, 2)3 jump code.

Lemma 11 There is nd(6, 3,2)3 jump code.

Proof. Assume that there are three orthonormal vecters |c2), |cs) which span the
basis of a(6,3,2)s jump code. Then, these vectors are linear combinations of twenty
vectors inW = {|z) : ¢ € F5, wt(z) = 3}. Let

i) = > af|e)
Tew
for ¢ = 1,2,3. Without loss of generality, we choose vect¢r$1000) and|000111).
Then similarly to (8) and (9), we obtain the following equations including the term of
04&)1000 and%lo)mu:
a(111)10000‘(1]1)1000 + a521)010004511)0100 + agil)o(noo‘gjl)o010 + 6?1)000104&]1)0001 =0
a1Z1)100004gj1)1000 + a510)11000490)1100 + aglo)loloagjo)mlo + aglo)10010‘(1jo)1001 =0
5111)100004%)1000 + a5)11)11()()‘3‘g)j1)1100 + a5)21)10100‘5)%)1010 + a(()11)100161((;1)1001 =0
6830111048%111 + a5)10)10110‘8]0)1011 + a5)10)11()1‘3‘5]())11()1 + a610)1110046]0)1110 =0
aglt))01110‘((JJ())0111 + aé?omﬂé%on + a5)11)0101‘)4(()j1)()1()1 + aggonoagjfouo =0
a(()10)0111‘34(()J())()111 + aYo)oonagjo)oon + agi))OlOla%)OlOl + 6310)011004%)0110 =0.
Summing up all these equations and by subtracting
S allal) o,
Tew

we obtain

—(i) (4) _ =) €]
Q1110009111000 = — 000111 %000111"



for anyi # j. This can be shown for any € . Hence,

(l) (J) =(9) (J’z (15)

—Q e

foranyE € (%) andi # j, whereE® = V' \ E and(} ) is the set ofi-element subsets
o VBy applying the similar calculation to (8) and (9), we obtain
o' + lagz!* = [af[* + o (16)
foranyE ¢ ( ) andi # j.
By multiplying (15) for (4, j) = (1,2), (2,3), (3,1), we have

1 2 3 1 2 3
lof ol ol 2 = —[aflailall?,
which means
04591)04(2)04(3) (1) g)a(E) —0.

Case 1.The case obg) =0 andagg = 0: In this case, by (l6<)x(§) =0 anda(bfl =0

foranyE € (%) andi = 1,2,3. Hence/|c;) = 0 for anyi, contradiction.

Case 2.The case o&g) =0 andagz = 0: Inthis caseagzagf = *5?0/3) 0 holds

by (15). The case o'} = 0 or ag) = O results in Case 1. Henca,(EC) = a§§> 0,

which also results in Case 1. Hence, the lemma is proved. O
By Lemma (11), we found that @, 2, 2)3 jump code in Example 4 has the maxi-

mum possible dimension for = 6, k£ = 3 andt = 2.

6. At-SEED and a jump code

Though the coeﬁicient&g) of aketvectofic) = > 5 rn ag) |x) are complex numbers

in general, by restricting the valueS@g) to 0 anda, wherea is a normalizing constant
satisfying(c|c) = 1, the combinatorial structure of quantum jump codes are closely
related to combinatorial designs.

Here, we identify a vectox = (z1,22,...,2,) € F" with its support seB =
supfx) = {i : #; = 1} and|x) with |B). Then a ket vectofc) = 3 ...z ax|x) is
represented by

lc) = ZI

BEB

whereB = {supgx) : ag # 0}.
Now, letV/E be the family of subsets df including E C V. We define projection
matrices



My= ) |z){x|= ) |B)B| and

TeFT Be(Y)
Lg= Y [|o)(@l= ) [B)B|
ECSUPAT) BEV/E

forany0 < k <nandE C V, then for any staté) = > ... ». az|),

M) = S agle) = S
TeFry \/713680

Lol)= Y agle)= W Y B

suppgx)>F BEBN(V/E)

hold.
By using M}, and L g, the conditon (5) for a-error correcting quantum jump code
with orthonormal basis|c;)} can be characterized by

(i) {(ci|Mg|c;) = 1foranyi and for givenk (t < k < n —t),
(i) (c;|Lglcj) = d;; g foranyi, jandE C V such thatE| < t.

For an orthonormal basigc;) = |B;) : i = 1,2,...,m}, by noting

Z _BONBY N (V/E)|

1% |B(1)‘ B BEB(i)mB(j)ﬁ(V/E) VIBO[-BY|

we find that (i) and (ii) implies

(T1) |B| = kforanyB € B,

(T2) %)MITDEH = \p holds for anyi andE c V, |E| < t, where)g is a

constant depending af.
(T3) BO NBY = ¢forij.

For ann-setV andB® c (Y), (i = 1,...,m),if (T1), (T2), (T3) are satisfied, then
asystem(V; B, ... B(™) is called a-spontaneous emission error desigienoted by
t-(n, k;m) SEED (see Figure 3).

Note that wher\ z depends only on the number of element$fii, a pair(V, B®)
is called at-(n, k, \) design whereA = \g for |E| = t. In particular, at-(n,k, 1)
design is called &teinert-design denoted byS(t, k, v). Moreover if |B| is constant
and{J~, B® = (V), at-SEED is called darge setof at-(n, k, \) design, denoted by
LSx(t, k, n). The number of-designs in a large setis = (;~ t)/A

{eilLple;) =

Lemma 12 For a fixedk < %, an LS (t, k, n) attains the upper bound (14) of Proposi-
tion 9.

7. Constructions oft-SEEDs

In this section various constructionsteSEEDs are described.
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Figure 3. An incidence matrix of &-SEED

7.1. Large sets

Firstly, known large sets are listed here. For deatils of large sets, we refer the reader to
Khosrovshahi and Tayfeh-Rezaie [20], Colbourn and Dinitz [13] and Tierlinck [31].

(i) AnLS;(2,3,v) exists for all admissible parameterswof- 7.
(i) An LSAmin(3,4, v) exists forv =0 (mod 3).
(i) An LSAmin(4’ 5,200 + 4) exists for gcdo, 30) = 1.
(iv) AnLSeo(4,5,60v + 4) exists for gcdv, 60) = 1, 2.
(v) The number of disjoint designs in L&, ¢ + 1,v) is¢ = ”T*t
(vi) NoLS;(3,4,v) is known.
(vii) Etizon and Hartman(1991) obtained near large set with5 disjoint3-(v, 4, 1)
designs fow = 5 - 2.
(viil) An LS3(3,4,v) exists forv = 0,6 (mod 12).
(ix) AnLSg(3,4,v) exists forv =9 (mod 12).
(X) AnLS;2(3,4,v) exists forv = 3 (mod 12).

7.2. t-SEEDs derived from orthogonal arrays

Let S be a set of; elements. Ag® x k array A with elements inS is called anorthog-
onal array, denoted by OA, k, ¢), if each ordered-tuple occurs exactly once in any
t-columns ofA. A large set of an orthogonal array LQAK, q) is a collectior{ A, },.cr
of OA(t, k, q)'s such that every orderddtuple of S occurs exactly once in one ¢f,.
Note that| R| = ¢" .

The following is known (see Raghavarao [26]):

Proposition 13 If there is an OA¢, k, ¢), then there is a large set LQAk, q).
By this Proposition, we obtain the following:

Theorem 14 If there exists an O, k, ¢), then there exists &(kq, k; ¢*~*) SEED.



Example 15 If ¢ is a prime power, then there exists-&qk, k; ¢*~*) SEED fork < ¢+1.

Remark: Bethet al. [8] obtained &-SEED fork = ¢q. Moreover, Beth et al. [8] claimed
that

log(dim. of jump code by Theorem)1 (¢ —t)logq 1
= —
log(the upper bound of (14) log (qut)

qg—t

asq — oo for fixed ¢. On the other hand, it holds that

dim. of jump code by Theorem 1 ¢7~*
the upper bound of (14) (q:—t)

—t

—0 (17)

asq — oo for fixedt.
Hence, we may pose a question whether there is a sequene®EdDs which is
asymptotically optimal in the sence that (17) tend to 1 except for a series of large sets?

7.3. Product methods and recursive constructions

Let (Vi; BM), ..., B™) be at-(n, k;m) SEED andk x ¢ matricesA") = (a%)) be
an LOA(t, k, ¢) with elements{0,1,...,¢ — 1}. LetV = V; x {0,1,...,¢ — 1} and
construct families of blocks

B®O = ({(by,al)), ..., (beaf )}« (i, bp) € BW, j=1,...,¢%}

forh=1,...,m,f=1,...,¢"t. Then, we obtain the following theorem.

Theorem 16 If there are at-(n, k;m) SEED and a LOA,k, q), then there is a-
(nq, k;mg*~*) SEED.

Applying this recusive construction to Theorem 14, we obtain the following:
Corollary 17 For a prime power, at-(¢"(¢ + 1), q + 1; ¢*(9+1=%) SEED exists.

Bethet al.[8] gave a construction which combines a quantum jump code and a usual
quantum code.

Theorem 18 (Beth et al. [8])LetC = (n,p,t), be a jump code of prime dimension.
Furthermore, leC,, = [[N, K, D]}, be a “quantum error-correcting code” in the space
(CP)®N . Then the concatenation 6fas inner andC,, as outer code yields a jump code

C = (Nn,pK,T)nw on Nn-qubits withT > D(t + 1) — 1.

A t-(n,k;m) SEED (V;BM ... B(™) is said to bes-resolvableif each B
is partitioned intoh subfamiliesB:1) ... BE&M) and a(V; B B2 Blmh))
forms ans-(n, k; mh) SEED.

|-resolvablet-(n, k;m) SEED(V; B, ... B™), then

Theorem 191If there is a|
2) SEED for any > 2, whereh is the number of subfamilies

there exists &-(nv, 2k; hm
B in B,

~— N+



We will give an example of Theorem 19. Lé&f,, be the complete graph of order
n. For evenn, a 1-factor of K, is a set of independent edges. A 1-factorizatiorof
is a partition of the edges df,, into n — 1 one-factors. For any even, there exists a
1-factorization ofK,,.

A 1-factorization can be seen ad-aesolvable3-(n, 2; 1) SEED. Hence, by Theo-
rem 19, we obtain the following corollary.

Corollary 20 For any evem and for any integer > 2, there is 83-(nv, 4;n—1) SEED,
which is an(nv,n — 1, 3)4 jump code.

Remark: In this case, the upper bound of the dimensionds- 3. Whenv < 3 this is
better than that of Corollary 2 fdr= 4, ¢t = 3.

Example 21In Figure 4 and Table 1, a 1-factor fof, is presented. A column

of Table 1 corresponds to an edge. And any two columns partitioned by vertical
lines correspond to 1-factors. In Table 2, each column corresponds to a block. Let
V = {00, 10,20, 30,01, 11,21,31}, then a four tuple(a,b : ¢,d) means a block
{ao,b0,61,d1}.

0 20 2 0 2 0 2
*r—
0

1 3 301 3 °3

Factor 1 Factor 2 Factor 3

Figure 4. A 1-factor forn = 4

Table 1. A 1-factor forn = 4

0O 2|0 1,0 1
1 3|2 3|3 2

Table 2. A 3-(8,4;3) SEEDforn =4, v=2,m=1,h=n—1=3

002200110011
113322333322

020201010101
131323233232

00220011001
11332233332

01010101020
23233232131

002200110011
113322333322

010102020101
323213132323




7.4. 2- and3-SEEDs derived from affine geometry

It is well known that the set of planes in AG, q) yields a2-(v = ¢",k = ¢*>,\ =
(¢"~' = 1)/(¢ — 1)) design.

Lemma 22 The2-design generated by the set of 2-flats in(AGy) is decomposed into

(i) ‘1(1;7:1 number of2-(v = ¢", k = ¢%, A = ¢ + 1) designs when is odd.

(i) Tz—? number of2-(v = ¢",k = ¢*>,\ = q + 1) designs and oné-(v =
q", k = ¢*, X = 1) design whem is even.

Munemasa [25] showed better results o= 2 by examining the orbit structure of
PG(2n — 1,2).

Lemma 23 (Munemasa [25])The number of lines in P@n — 1, 2) whose orbit under
the subgroup of index in the Singer group is a spead is given by

2%(22” —1)(2" + (=1)"Th)2. (18)

By using Lemma 23, we can obtair2eSEED.

Example 24 PG(7,2) has2® — 1 = 255 points and

(28 —1)(2" - 1)
> =2 42
@-nE-1) 55 x 42+ 85
lines. These lines are partitioned into 42 Singer cycles whose orbits are full and a single
cycle of short orbit with orbit length 85. For a ling in a full orbit,

{a(LUO)+b:ac GF(2%)*,bc GF(2%)}

generates 2-(28,4,3) design and a line in the short orbit generateg-42%, 4, 1) de-
sign. Among thosd2 full orbits there are8 orbits each of which can be partitioned
into 3 spreads of lines. Actually, for a rogt of the primitive irreducible polynomial
P+ a5+ a3+ 22+ x4+ 1, B={p° 37,37} and its Frobenius cycle of lengthare
lines in such orbits. Hence, we obtad spreads and each of these spreads generates
a 2-(2%,4,1) design. As a total, we obtaif24 + 1) 2-(28,4, 1) designs and42 — 8)
2-(28, 4, 3) designs, which generate2a(2®, 4; 59) SEED.

In general, by Lemmas 22 and 23 it holds that the number of full orbit%@i.
Among these, there are

(2n + (_1)n+1)2 -9
27

orbits which can be partitioned into 3 spreads. Hence, we obtain the following theorem.



Theorem 25 The 2-design generated by the set of 2-flats in(26 2) is decomposed
into

22n—1 -9 (2n + (_1)n+1)2 -9

3 27

number of disjoin®-(22", 4, 3) designs and

(2n + (_1)n+1)2
9

-1

number of disjoin2-(22", 4, 1) designs. Hence, there is2a(22", 4; f»,,) SEED, where

_ 22n—1 -9

o pr HEE D2 )

3 27

Now, for V' = GF(2)", leto be a mapping such taht: z — z* forx € V. Then
our problem is to find the condition anin order that @ ando (D) are disjoint, where
D is a3-design generated from 2-flats of A& 2). Whens = 2%, 0 : z — 2% is a
Frobenius automorphism @. In this case, it holds that(D) = D.

LetD = (V, B) is the 3{27,4,1) design derived from 2-flats of AG, 2). Let s be
an integer such thdk, n) = 1, wheren = 2/ — 1. Theno : z — z* is a bijection on
V = GF(27) ando (D) = D is isomorphic taD.

Lemma 26 If s € Z,, satisfies

() ged(s,n) =1,
(i) Vo € GF(2")\ 0,1}, (14 2)° # 1+ 2°,
(i) Vo #Vy e GF2")\{0,1}, 1+ z+y)* #1+z° +y°,

then the design®® andD are isomorphic and disjoint.
Lemma 27 Whenf is odd,s = 3 satisfies the conditions (i), (ii), (iii) of Lemma 26

Remark:If s satisfies the condition (i), (ii), (iii), the@s ands~! (mod n) also does.
Whenm < 12is even,s = 1 is the only parameter satisfying the condition (i) and (ii).

Assume that ands’ satisfy the condition of Lemma 26. Thé» andD*’ are also
disjoint whens’s~! (mod n) satisfies the conditon. By choosing a Setuch that’s !
(mod n) satisfies the condition for eaghs’ € .S, we obtain a set of disjoirP*’s.

Example 28 (i) For f = 50s = 1,3,5,7,11, 15 generate six disjoing-(2°,4,1)
designs.
(i) For f=70s=1,3,5,9,15,43 generate six disjoin-(27,4, 1) designs.

Hence, we obtain the followingSEEDs:

Lemma 29 There exists &-(2°,4;d¢) SEED containing &-(2°, 4; dlfﬂ*%) SEED,
whered; = 2,6,6,...for f =3,5,7,---.



Table 3. List of s such thatD andD* are disjoint

m | #ofs | representatives of

3 2 1,3

6 1,3,5,7,11,15

12 1,3,5,9,11, 13, 15, 23, 27, 29, 43, 63

14 1,3,5,13,17,19, 27, 31, 47,59, 87, 103, 171, 255
11 24 1,3,5,9, 13, 17, 33, 35, 43, 57, 63, 95, 107, 117, 143,
151, 231, 249, 315, 365, 411, 413, 683, 1023
13 28 1,3,5,9, 13,17, 33, 57, 65, 67, 71, 127, 171, 191, 241,
287, 347, 367, 635, 723, 911, 1243, 1245, 1453, 1639,
1691, 2731, 4095

7.5. 5-SEEDs derived from Golay code

In this section, we review mutually disjoifitdesigns related to the Golay code and self
dual codes.

Kramer and Magliveras [21] constructedl mutually disjoint Steiner systems
S(5,8,24) by finding 8 permutations or24 points. Araya [4] also constructeld mu-
tually disjoint Steiner system$(5, 8,24) by a computer search. The following results
were shown by Jimbo and Shiromoto [18].

Theorem 30 There exists at leag2 mutually disjoint Steiner systeri$5, 8, 24). Hence
ab5-(24,8;22) SEED exists.

Theorem 30 can be obtained by making disjoint isomorhis-(24, 8, 1) designs
from the Golay code. We will give a breif proof of Theorem 30.
Let Go4 be the binary extended Gold4, 12, 8] code with parity-check matrix

100000000000110111000101
01000000000001101110001 1
001000000000101101110001 1
000100000000010110111001
gpegingansasagotiior |, 4,

H(G24)=]000000100000100010110111 12 411
000000010000110001011011 1
000000001000111000101101
000000000100011100010111 1---10
000000000010101110001011
000000000001111111111110

Note thatA; is a circulant matrix, and the Hamming distance between any two distinct
row vectors ofd; is 6.

Leto = (13,14,...,23) andT = (1,13)(2,14) - - - (11, 23) be the coordinate per-
mutations which act on the vector space(®F!. We denote the zero vector and the
all-one vector byd and1, respectively. For any positive integer, let J,,, be the all-one
m x m matrix. The following lemma is well-known and is essential (see, for instance,
Ch. 16 in [22]).

Lemma 31 Let X be a circulant matrix of first rowcy, c1, . . ., ¢,—1) over a finite field.
X is invertible if and only ifag(z) = co + c1z + -+ - + c,—12™ 1 is relatively prime to
z" — 1.

Now the following three lemmas are obtained.



Lemma32For anyi,j € {0,1,...,10}, i # j, the intersection between all the
codewords inGg, and Gg, is {0,1,x,x + 1}, wherez is the weight12 vector
(0,...,0,1,...,1,0).

Lemma33For anyi,j € {0,1,...,10}, i # j, the intersection between all the
codewords inG3¢" and G3¢’ is {0,1,y,y + 1}, wherey is the weight12 vector
(1,...,1,0,...,0).

Lemma 34 For any: andj, the intersection between all the codewordggij andgggj
is{0,1}.

By summarizing these results, we have the following:

Theorem 35Leto = (13,14,...,23) and7 = (1,13)(2,14)--- (11, 23) be the per-
mutations or24 points and letd be the set of all permutations of the forrtv® in the
permutation groupSs4. And let3 be the set of supports of all the Hamming weight
codewords inGy4. Then{B? : g € H} forms the set 022 mutually disjoint Steiner
systemsS (5, 8, 24).

In Theorem 35, for any subséf of H, the collectionJ ., B? can be viewed as
a set of blocks in a simpl&-(24, 8, | K|) design. Then we have the following result as a
corollary of Theorem 35.

Corollary 36 There exist simpl&-(24, 8, m) designs, form =1,2,...,22.

It is also known that the set of supports of the codewords of Hamming wéght
in Go4 forms ab5-(24,12,48) design. From Proposition 34, there is no codewords of
Hamming weight 2 in the intersection betweegg, andG3{” .

Corollary 37 There exists at least two mutually disjoint24, 12, 48) designs. And there
exist simples-(24, 12, 48m) designs, form = 1, 2.

Recently, Araya and Harada [5] found the following by a computer search.

Theorem 38 (Araya and Harada [5]) There exists at leasi) mutually disjoint Steiner
systemsS(5, 8, 24). Hence &-(24, 8; 50) SEED exists.

Theorem 39 (Araya and Harada [5]) There exists at leas85 mutually disjoint 5-
S(24,12,48) designs. Hence (24, 12; 35) SEED exists.

Similar resluts were obtained for a quadratic residue code of letygth

Theorem 40 (Jimbo and Shiromoto [18]) There exists at least6 mutually disjoint
simple5-(48, 12, 8) designs. Hence & (48, 8; 46) SEED exists.

The above results are based on a binary extended Golay code of &hgthd
a quadratic residue code of lengtB. Angata and Shiromoto [3] and Araya, Harada,
Tonchev and Wassermann [6] independently generalized the results to the case of Pless
symmetry (ternary) code.



Theorem 41 (Angata and Shiromoto [3]) There exist at least

(i) 34 mutually disjoint5-(36, k, A) designs for eaclik, \) = (12, 45), (15,5577).
(i) 58 mutually disjoint 5-(60, k£, \) designs, for each(k,A) = (18,3060),
(21,449820), (24, 34337160), (27, 1271766600).

Remark: Araya, Harada, Tonchev and Wassermann [6] found 17 mutually disjeint
(36,12, 45) designs.

Theorem 42 (Angata and Shiromoto [3], Araya, Harada, Tonchev, Wassermann [6])
There exist at least 11 mutually disjoint(34, 9, 6) designs.

Theorem 43 (Angata and Shiromoto [3]) There exist at least 23 mutually disjoint 5-
(48, k, \) designs, for eaclik, ) = (15,364), (18,50456), (21,2957388).

By these results, the following is obtained:

Corollary 44 There exist

(i) a5-(36,12;34) SEED fork = 12,15,

(i) a5-(60,k; 58) SEED fork = 18,21, 24, 27,
(i) a5-(24,9;11) SEED, and
(iv) a5-(48, k;23) SEED fork = 15,18, 21.

Moreover, Araya, Harada, Tonchev and Wassermann [6] obtained the following.

Theorem 45 (Araya, Harada, Tonchev and Wassermann [6]Fhere exist at least

(i) 3 mutually disjoint 5¢18, 8, 6) designs,

(i) 5 mutually disjoint 5(24, 10, 36) designs,
(i) 2 mutually disjoint 5¢25, 9, 30) designs,
(iv) 2 mutually disjoint 530, 12, 220) designs,
(v) 4 mutually disjoint 5632, 6, 3) designs.
(vi) 4 mutually disjoint 5¢33,7,4) designs.

Corollary 46 There exist a5-(18,8;2) SEED, a5-(24,10;5) SEED, a5-(25,9;2)
SEED, a5-(30,12;2) SEED, a5-(32, 6;4) SEED and &-(33,7;4) SEED.

7.6. More SEEDs from codes

By Assmus and Matson [7]'s theorem, codewords of weighf codes in Table 4 form
3-designs, ob-designs. If we can partition the design into subdesigrSEEDs can be
obtained. The results in Table 4 were reported by Shiromoto [27].

From these computation results, the following theorem is shown.

Theorem 47 There exist 83-(32, 8;3) SEED, a3-(32, 10;24) SEED, a3-(32,12;52)
SEED, a3-(32, 14; 90) SEED, and &-(32, 16; 132) SEED.



Table 4. Partition oft-designs derived from codes

codes | Aut(C) | weights | desigris' | As of subdesigns
; | 6| 3-(32,6,4) T a |
8 3-(32,8,119) 56, 56, 7
Extended BCH AT'L(1,32) 10 3-(32,10,1464) 120 x 24
[32,21, 6] Code 12 3-(32,12,10120) 220 x 43, 44,22 x 3,
110 X 5
14 3-(32,14,32760) 364 x 90
16 3-(32,16,68187) 560 x 119, 112 x 5,
140 x 7,7
It's dual ATL(1, 32) 12 3-(32,12,22) 22
[32,11,12] Code 16 3-(32,16,119) 7,112
Extended BCH AGL(2,5) 12 3-(32,12,616) 616
[32,16, 8] Code 16 3-(32,16,4123) 3136, 7,980
Self-Dual 8 3-(32,8,7) 7
Extended QR PSL(2, 31) 12 3-(32,12,616) 11, 165, 110, 330
[32, 16, 8] Code 16 3-(32,16,4123) 112, 336, 560, 840, 210,
140, 105,840,560 ,420
Self-Dual Extended QR 12 5-(48,12,8) 3-(4802110,55,55
[48,24,12] Code PSL(2,47) 16 5-(48,16,1365) unknown
20 5-(48,20,36176) unknown

(*1) Assmus & Matson (1969)
(*2) Computations of subdesigns using MAGMA were assisted by M. Angata

8. Concluding remark and open problems

In this paper, we considered constructions-efror correcting jump codes aneSEEDSs.
Besides the construction 6SEEDs reviewed in this paper, more constructions are pre-
sented in Betlet al.[8] and Charnes and Beth [12]. Bethal.[8] gave a construction of
(n,2,1); jump codes by using isodual binary codes, which was extended by Charnes and
Beth [12] utilizing a group theoretical technique. However, only a few results are known
for optimal¢t-SEEDs attaining the upperbound (16) for 2. In general{-SEEDs have
weaker combinatorial conditions than that of large sets. But we do not know any example
of optimal¢-SEEDs except for large sets.

Problem 48 Is there an optimai-SEED attaining the upperbound (16) for 2 except
for large sets?

A jump code can be considered as a continuous versionte8BED or a system
of disjoint t-designs. Actually, “balancedness” is generalized to the constancy of inner
product. Whereas, “disjointness” corresponds to orthogonality.
Itis ovbious that if there is &(n, k; m) SEED, then there is @, m, t); jump code.
But it may not be known whether there is an example such that there (is,amn ¢);
jump code even if there is ne(n, k; m) SEED.



Problem 49 Is there an(n,m,t); jump code even if there is ne(n, k; m) SEED. In
paticular, a(7,3,2)3 jump code can be constructed by two disjdin7, 3,1) designs
and one2-(7, 3,3) designs. But the upperbound fort is 5. Is there &a(7,m, 2)5 jump
code form = 4 or 5?

Problem 50 If there is an L$(t, k, n) it is optimal in the sense that it attains the upper-
bound (14). However, in the case when there is no(L %, n), can we find an optimal
or asymtotically optimal-(n, k; m) SEED fort > 2?

In Subsection 7.5, we showed that there aee disjoint 5-(24,8,1) designs.
Whereas, Harada [16] found 50 disjoi#y{24, 8, 1) designs by computer search. If an
LS, (5,8, 24) exists it must hav8 x 17 x 19 disjoint5-(24, 8, 1) designs. Similarly, we
wonder whether a L (5, 12, 24) exists, or not. We pose here a challenging problems.

Problem 51 Does there exist an 1%, 8,24)?

Problem 52 Does there exist an L§(5,12,24)?
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