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Abstract. The adjacency matrix of a graph can be interpreted as the incidence
matrix of a design, or as the generator matrix of a binary code. Here these relations
play a central role. We consider graphs for which the corresponding design is a
(symmetric) block design or (group) divisible design. Such graphs are strongly
regular (in case of a block design) or very similar to a strongly regular graph (in case
of a divisible design). Many construction and properties for these kind of graphs
are obtained. We also consider binary code of a strongly regular graph, work out
some theory and give several examples.
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1. Introduction

Central is this reader is the interplay between graphs and designs. We start with a prelim-
inary chapter on strongly regular graphs, block designs and their interplay. Then we will
look at binary codes generated by the adjacency matrix of a strongly regular graph. This
section is mainly based on [24]. The third part, based on [21], is devoted to a more recent
development on graphs that are related to divisible designs. We introduce basic concepts
as block designs, strongly regular graphs and Hadamard matrices, but we assume basic
knowledge of algebra and graph theory. Some useful general references are [4,16,29,39].

2. Graphs and designs

2.1. Designs

A block design with parameters (v, k, λ) is a finite point set P of cardinality v, and a
collection B of subsets (called blocks) of P , such that:

(i) Each block has cardinality k (2 ≤ k ≤ v − 1).
(ii) Each (unordered) pair of points occurs in exactly λ blocks.

A block design with parameters (v, k, λ) is also called a 2-(v, k, λ) design. The incidence
matrix N of such a design is the (0, 1) matrix with rows indexed by the points, and
columns indexed by the blocks, such that Nij = 1 if point i is in block j, and Nij =
0 otherwise. The following result is a straightforward translation of the definition into
matrix language. (as usual, J stands for an all-ones matrix, and 1 for an all-ones vector).



Proposition 2.1 A (0, 1) matrix N is the incidence matrix of a 2-(v, k, λ) design if and
only if

N>1 = k1 and NN>= λJ + D ,

for some diagonal matrix D.

Theorem 2.1 Suppose (P,B) is a 2-(v, k, λ) design with incidence matrix N , then

(i) each point is incident with r = λ(v − 1)/(k − 1) blocks, that is N1 = r1, and
NN>= λJ + (r − λ)I ,

(ii) the number of blocks equals b = vr/k, that is N has b columns,
(iii) b ≥ v with equality if and only if N> is the incidence matrix of a 2-(v, k, λ)

design.

Proof. (i): Fix a point z ∈ P . By use of ii of the above definition, the number of pairs
(x, a) with x ∈ P , x 6= z and a ∈ B, z ∈ a equals λ(v−1). On the other hand it is equal
to k − 1 times the number of blocks containing z. Equation (ii) follows by counting the
number of pairs (x, a) with x ∈ P , a ∈ B, a ∈ a (that is, the number of ones in N ).
(iii): From (i) and Proposition 2.1 it follows that

R =
1

r − λ
N>+

λ

r(r − λ)
J

is a right inverse of N . Therefore N has rank v, and hence b ≥ v. Moreover, if b = v,
then r = k, R = N−1 and we have I = N−1N , which leads to N>N = (k−λ)I +λJ .
By (i) we have N1 = k1, hence N> is the incidence matrix of a 2-(v, k, λ) design by
Proposition 2.1. tu

A 2-(v, k, 1) design is also called a Steiner 2-design. A block design with b = v is
called symmetric. The dual of a design with incidence matrix N is the structure with
incidence matrix N>. Theorem 2.1(ii) states that the dual of a symmetric design is again
a symmetric design with the same parameters. In terms of the original design, it means
that any two distinct blocks intersect in the same number of points. In general, the size
of the intersection of two distinct blocks can vary. If in a block design these numbers
take only two values, we call the design quasi-symmetric. Obviously, two blocks in a
Steiner 2-design cannot have more than one points in common, so it is symmetric, or
quasi-symmetric. Note that if N is the incidence matrix of a 2-(v, k, λ) design (P,B),
then J−N represents a 2-(v, v−k, b−2v+λ) design, called the complement of (P,B).
Moreover, if N is symmetric (or quasi-symmetric), the so is the complement.

Many examples of block designs come from geometries over a finite field Fq. For
example the points end the lines in in projective space of dimension n over Fq give a
2-(qn + qn−1 + . . . + q + 1, q + 1, 1) design. Because λ = 1, it is Steiner 2-design,
and therefore quasi-symmetric, or symmetric. The design is a symmetric if and only if
n = 2. Such a design is called a projective plane of order q. The smallest case q = 2
gives the famous Fano plane.

Another family of examples comes from Hadamard matrices. An m×m matrix H
is a Hadamard matrix (of order m) if every entry is 1 or −1, and HH>= mI . In other
words, H−1 = 1

mH>hence H>H = mI . If a row or a column of a Hadamard matrix is



multiplied by −1, the matrix remains a Hadamard matrix. Therefore we can accomplish
that the first row and column consist of ones only. If we then delete the first row and
column we obtain a (m−1)×(m−1) matrix C, often called the core of H (with respect
to the first row and column). It follows straightforwardly that a core C of a Hadamard
matrix satisfies CC> = C>C = mI − J , and C1 = C>1 = −1. This implies that
N = 1

2 (C +J) satisfies N>1 = (1
2m− 1)1 and NN>= 1

4mI +( 1
4m− 1)J , that is, N

is the incidence matrix of a 2-(m− 1, 1
2m− 1, 1

4m− 1) design (provided m > 2). Note
that this implies that if m > 2, then m is divisible by 4.

A Hadamard matrix H is regular if H has constant row and column sum (` say).
From HH> = mI we get that `2 = m, so ` = ±

√
m, and m is a square. If H is a

regular Hadamard matrix, the we easily have that N = 1
2 (H +J) is the incidence matrix

of a symmetric 2-(m, (m + `)/2, (m + 2`)/4) design. Examples of Hadamard matrices
are:

[
1 1
1 −1

]
and


−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1

1 −1 −1 −1

 .

One easily verifies that, if H1 and H2 are Hadamard matrices, then so is the Kronecker
product H1⊗H2. Moreover, if H1 and H2 are regular, then so is H1⊗H2. With the above
examples (note that the second one is regular) we can construct Hadamard matrices of
order m = 2i, and regular ones of order 4i for i ≥ 0. Many more constructions for
Hadamard matrices and block designs are known. Some general references are [6] and
[16], Chapter V.

2.2. Strongly regular graphs

A strongly regular graph with parameters (v, k, λ, µ) (often denoted by SRG(v, k, λ, µ))
is a (simple undirected and loopless) graph of order v satisfying:

(i) each vertex is adjacent to k (1 ≤ k ≤ v − 2) vertices,
(ii) for each pair of adjacent vertices there are λ vertices adjacent to both,
(iii) for each pair of non-adjacent vertices there are µ vertices adjacent to both.

For example, the pentagon is strongly regular with parameters (v, k, λ, µ) = (5, 2, 0, 1).
One easily verifies that a graph Γ is strongly regular with parameters (v, k, λ, µ) if and
only if its complement Γ is strongly regular with parameters (v, v− k− 1, v− 2k + µ−
2, v−2k+λ). The line graph of the complete graph of order m, known as the triangular
graph T (m), is strongly regular with parameters ( 1

2m(m − 1), 2(m − 2),m − 2, 4).
The complement of T (5) has parameters (10, 3, 0, 1). This is the Petersen graph (see
Figure 1).

A graph Γ satisfying condition (i) is called k-regular. The adjacency matrix of a graph
Γ is the symmetric (0, 1) matrix A indexed by the vertices of Γ, where Aij = 1 if i is
adjacent to j, and Aij = 0 otherwise. It is well-known and easily seen that A1 = k1
for a k-regular graph, in other words, the adjacency matrix of a k-regular graph has an
eigenvalue k with eigenvector 1. Moreover, every other eigenvalue ρ satisfies |ρ| ≤ k,
and if Γ is connected, the multiplicity of k equals 1 (see Biggs [7]). For convenience we
call an eigenvalue restricted if it has an eigenvector perpendicular to 1. So for a k-regular
connected graph the restricted eigenvalues are the eigenvalues different from k.
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Figure 1. The Petersen graph

Theorem 2.2 For a simple graph Γ of order v, not complete or empty, with adjacency
matrix A, the following are equivalent:

(i) G is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,
(ii) A2 = (λ− µ)A + (k − µ)I + µJ for certain reals k, λ, µ,
(iii) A has precisely two distinct restricted eigenvalues.

Proof. The equation in (ii) can be rewritten as

A2 = kI + λA + µ(J − I −A).

Now (i) ⇔ (ii) is obvious.
(ii) ⇒ (iii): Let ρ be a restricted eigenvalue, and u a corresponding eigenvector perpen-
dicular to 1. Then Ju = 0. Multiplying the equation in (ii) on the right by u yields
ρ2 = (λ−µ)ρ+(k−µ). This quadratic equation in ρ has two distinct solutions. (Indeed,
(λ− µ)2 = 4(µ− k) is impossible since µ ≤ k and λ ≤ k − 1.)
(iii) ⇒ (ii): Let r and s be the restricted eigenvalues. Then (A− rI)(A− sI) = αJ for
some real number α. So A2 is a linear combination of A, I and J . tu

As an application, we show that quasi-symmetric block designs give rise to strongly reg-
ular graphs. Recall that a quasi-symmetric design is a 2-(v, k, λ) design in which any two
distinct blocks meet in either x or y points, for certain fixed x, y. Given this situation,
we may define a graph Γ on the set of blocks, and call two blocks adjacent when they
meet in x points. Then there exist coefficients α1, . . . , α7 such that NN>= α1I + α2J ,
NJ = α3J , JN = α4J , A = α5N

>N + α6I + α7J , where A is the adjacency matrix
of the graph Γ. (The αi can be readily expressed in terms of v, k, λ, x, y.) Then Γ is
strongly regular by (ii) of the previous theorem. Indeed, from the equations just given it
follows straightforwardly that A2 can be expressed as a linear combination of A, I and
J . We know that all 2-(v, k, 1) designs are quasi-symmetric. This leads to a substantial
family of strongly regular graphs, including the triangular graphs T (m) (derived from
the trivial design consisting of all pairs out of an m-set).

Theorem 2.3 Let Γ be a strongly regular graph with adjacency matrix A and parameters
(v, k, λ, µ). Let r and s (r > s) be the restricted eigenvalues of A and let f and g be
their respective multiplicities. Then

(i) k(k − 1− λ) = µ(v − k − 1),
(ii) rs = µ− k, r + s = λ− µ,
(iii) f, g = 1

2 (v − 1∓ (r+s)(v−1)+2k
r−s ).



(iv) r and s are integers, except perhaps when f = g, (v, k, λ, µ) = (4t + 1, 2t, t−
1, t) for some integer t.

Proof. (i) Fix a vertex x of Γ. Let Γ(x) and ∆(x) be the sets of vertices adjacent and non-
adjacent to x, respectively. Counting in two ways the number of edges between Γ(x) and
∆(x) yields (i). The equations (ii) are direct consequences of Theorem 2.2(ii), as we saw
in the proof. Formula (iii) follows from f +g = v−1 and 0 = trace A = k +fr +gs =
k + 1

2 (r + s)(f + g) + 1
2 (r − s)(f − g). Finally, when f 6= g then one can solve for r

and s in (iii) (using (ii)) and find that r and s are rational, and hence integral. But f = g
implies (µ− λ)(v − 1) = 2k, which is possible only for µ− λ = 1, v = 2k + 1. tu

These relations imply restrictions for the possible values of the parameters. Clearly, the
right hand sides of (iii) must be positive integers. These are the so-called rationality
conditions. As an example of the application of the rationality conditions we can derive
the following result due to Hoffman & Singleton [27]

Theorem 2.4 Suppose (v, k, 0, 1) is the parameter set of a strongly regular graph. Then
(v, k) = (5, 2), (10, 3), (50, 7) or (3250, 57).

Proof. The rationality conditions imply that either f = g, which leads to (v, k) = (5, 2),
or r − s is an integer dividing (r + s)(v − 1) + 2k. By use of Theorem 1(i)-(ii) we have

s = −r − 1, k = r2 + r + 1, v = r4 + 2r3 + 3r2 + 2r + 2,

and thus we obtain r = 1, 2 or 7. tu

The first three possibilities are uniquely realized by the pentagon, the Petersen graph and
the Hoffman-Singleton graph. For the last case existence is unknown

Except for the rationality conditions, a few other restrictions on the parameters are
known. We mention two of them. The Krein conditions [35], can be stated as follows:

(r + 1)(k + r + 2rs) ≤ (k + r)(s + 1)2,

(s + 1)(k + s + 2rs) ≤ (k + s)(r + 1)2.

The absolute bound (see Delsarte, Goethals & Seidel [17]) reads,

v ≤ f(f + 3)/2, v ≤ g(g + 3)/2.

The Krein conditions and the absolute bound are special cases of general inequalities
for association schemes, see for example [10]. For constructions and more results on
strongly regular graphs we refer to [11], [12], [15], [16], [28], or [36].

2.3. Neighborhood designs

Any graph Γ can be interpreted as a design, by taking the vertices of Γ as points, and the
neighborhoods of the vertices as blocks. In other words, the adjacency matrix of Γ is in-
terpreted as the incidence matrix of a design. Let us call such a design the neighborhood
design of Γ.



Consider a strongly regular graph Γ with parameters (v, k, λ, µ). If λ = µ, then any
two distinct vertices have exactly λ common neighbors, and the adjacency matrix A of
Γ satisfies

AA>= A2 = (k − λ)I + λJ .

This implies that the neighborhood design of Γ is a symmetric 2-(v, k, λ) design (some-
times called: (v, k, λ) design). Rudvalis [34] has called such a graph a (v, k, λ) graph.
If a symmetric design admits a symmetric incidence matrix, the corresponding bijection
between points and blocks is called a polarity of the design. The points (and blocks) that
correspont to a 1 on the diagonal are the absolute points (blocks) of the polarity. Thus a
(v, k, λ) design with a polarity with no absolute points can be interpreted as a (v, k, λ)
graph.

Similarly, if A is the adjacency matrix of a strongly regular graph with parameters
(v, k, λ, λ + 2), then A + I is the incidence matrix of a square 2-(v, k, λ) design, and
in this way one obtains precisely the 2-(v, k, λ) designs possessing a polarity with all
points absolute.

This interplay between graphs and designs turned out to be fruitful for both parts.
For example, an easy construction of a symmetric 2-(16, 6, 2) design goes via the 4× 4
grid, (that is, the line graph of the complete bipartite graph K4,4, also known as the
Lattice graph L(4)), which is a (16, 6, 2) graph. It may happen, however, that two non-
isomorphic (v, k, λ) graphs, Γ1 and Γ2 with adjacency matrices A1 and A2 say, give iso-
morphic designs. Also A1 and A2+I can represent isomorphic designs. The standard ex-
ample is given by the two SRG(16, 6, 2, 2)’s (the lattice graph L(4) and the Shrikhande
graph) and the unique SRG(16, 5, 0, 2) (the Clebsch graph). The three graphs produce
the same symmetric 2-(16, 6, 2) design.

Proposition 2.2 If two non-isomorphic (v, k, λ) graphs Γ1 and Γ2 give rise to isomor-
phic (v, k, λ) designs, then both Γ1 and Γ2 have an involution (that is, an automorphism
of order 2).

Proof. Let Ai be the adjacency matrix of Γi (i = 1, 2), and assume that the correspond-
ing designs are isomorphic. Then there exist permutation matrices P and Q such that
PA1Q = A2. Without loss of generality we assume Q = I (otherwise replace A2 by
Q>A2Q). The symmetry of A2 gives PA1 = A1P

>, and hence PmA1 = A1(Pm)>.
If P has even order 2m, then P 2m = I and Pm = (Pm)> 6= I . This implies
A1 = P 2mA1 = PmA1(Pm)>, so Pm is an involution. If P has odd order 2m−1, then
A2 = PA1 = P 2mA1 = PmA1(Pm)>, so Γ1 and Γ2 are isomorphic graphs. tu

So, if for example a (v, k, λ) graph Γ has a trivial automorphism group, then any other
(v, k, λ) graph not isomorphic to Γ gives a non-isomorphic design. For instance, there
exist 16428 (36, 21, 12) graphs. From these graphs, 15127 have a trivial automorphism
group (see [37], [30]). So at least 15128 are also non-isomorphic as designs.

A large family of (v, k, λ) graphs comes from regular graphical Hadamard matrices.
A Hadamard matrix H is graphical if it is symmetric with constant diagonal. Without
loss of generality we assume that the diagonal elements are −1 (otherwise we replace
H by −H). If, in addition, H is regular of order m with row sum ` = ±

√
m, then

A = 1
2 (H + J) is the adjacency matrix of an (m, (m + `)/2, (m + 2`)/4) graph. The

two smallest regular graphical Hadamard are:




−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 and


−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1

1 −1 −1 −1

 .

It is easily verified that if H1 and H2 are regular graphical Hadamard matrices with row
sums `1 and `2, respectively, then the Kronecker product H1⊗H2 is again such a matrix,
whose row sum is `1`2. Starting with the above Hadamard matrices, we can make regular
graphical Hadamard matrices of order m = 4t with row sum ` = 2t and ` = −2t. Many
more constructions are known, for example if m = 4t4, t ≥ 1 for ` = 2t2 and ` = −2t2

(see [16] for a survey, and [26] for some recent developments).

3. Binary codes of strongly regular graphs

3.1. Introduction

Codes generated by the incidence matrix of combinatorial designs and related structures
have been studied rather extensively. The best reference for this is the book by Assmus
and Key [4] (see also the update [5]). Codes generated by the adjacency matrix of a graph
did get less attention. For strongly regular graphs there is much analogy with designs and
therefore interesting results may be expected. Concerning the dimension of these codes,
that is, the p-rank of strongly regular graphs , several results are known: see [9], [33]. It
has turned out that some special strongly regular graphs generate nice codes, see [23] and
[38]. Here we restrict to binary codes, not only because it is the simplest case, but also
since for the binary case there is a relation with regular two-graphs and Seidel switching
that has already proved to be useful: see [23] and [14].

For an integral n× v matrix A we define the binary code CA of A to be the subspace
of V = Fv

2 generated by the rows of A (mod 2). We start with some known lemmas for
symmetric integral matrices (see [9], [13] or [33]).

Lemma 3.1 If A is a symmetric integral matrix with zero diagonal, then 2-rank(A) (i.e.
the dimension of CA) is even.

Proof. Let A′ be a non-singular principal submatrix of A with the same 2-rank as A.
Over Z, any skew symmetric matrix of odd order has determinant 0 (since det(A) =
−det(A>)). Reduction mod 2 shows that A′ has even order. tu

Lemma 3.2 If A is a symmetric binary matrix, then diag(A) ∈ CA.

Proof. Suppose x ∈ C⊥A . Then
∑

i(A)iixi =
∑

i,j(A)ijxixj = x>Ax = 0 (mod 2), so
x ⊥ diag(A). Hence diag(A) ⊥ C⊥A . tu

With these lemmas we easily find a relation between the codes CA and CA+J .

Proposition 3.1 Suppose A is the adjacency matrix of a graph then CA ⊆ CA+J and the
following are equivalent:

(i) CA = CA+J , (ii) 1 ∈ CA, (iii) dim(CA+J) is even.



Proof. By Lemma 3.2, diag(A + J) = 1 ∈ CA+J , so CA+J = CA + 〈1〉 and the
equivalence of (i) and (ii) follows. By Lemma 3.1 we have 2-rank(A) is even and so
(i) ⇔ (iii). tu

The next proposition gives a trivial but useful relation between CA and CA+I .

Proposition 3.2 If A is a symmetric integral matrix, then C⊥A ⊆ CA+I with equality if
and only if A(A + I) = 0 (mod 2).

Proof. Suppose x ∈ C⊥A . Then Ax = 0 (mod 2), so (A + I)x = x and hence x ∈ CA+I .
Clearly A(A + I) = 0 (mod 2) reflects that CA+I ⊆ C⊥A , which completes the proof. tu

3.2. Facts from the parameters

Here we present some properties of the binary codes of a strongly regular graph Γ, using
only the parameters (eigenvalues) of Γ.

Proposition 3.3 Suppose Γ has non-integral eigenvalues.

(i) If µ is odd (i.e. v = 5 mod 8) then CA = 1⊥ and CA+I = V.
(ii) If µ is even (v = 1 mod 8) then C⊥A = CA+I and dim(CA) = dim(CA+I)− 1 =

2µ (= f = g = k = (v − 1)/2).

Proof. If µ is odd, Equation 2.2(ii) becomes A2 = A+I+J (mod 2), so (A+J)(A+I) =
I (mod 2), hence CA+J = CA+I = V and CA = 1⊥. Suppose µ is even. Then A2 = A
(mod 2) so CA+I = C⊥A . The characteristic polynomial of A is given by:

det(xI −A) = (x + k)(x2 + x + µ)f = xf+1(x + 1)f (mod 2).

Therefore 2-rank(A + I) ≥ v − f and 2-rank(A) ≥ v − (f + 1) = f . We know
(Proposition 3.2) 2-rank(A) + 2-rank(A + I) = v, and the result follows. tu

Proposition 3.4 Suppose the eigenvalues r and s of Γ are integers.

(i) If k = r = s = 1 (mod 2) then CA = V, CA+I is self-orthogonal and
dim(CA+I) ≤ min{f + 1, g + 1}.

(ii) If r = s = 1 (mod 2) and k is even, then CA = 1⊥, CA+I is orthogonal to CA
and dim(CA+I) ≤ min{f + 1, g + 1}.

(iii) If r 6= s (mod 2) and k is even, then CA+I = C⊥A , dim(CA) = f ′ and
dim(CA+I) = v − f ′, where f ′ is the multiplicity of the odd eigenvalue.

(iv) If r 6= s (mod 2) and k is odd, then CA = C⊥A , dim(CA) = f ′ + 1 and
dim(CA+I) = v − f ′.

(v) If r = s = 0 (mod 2) then k is even, CA+I = V, CA is self-orthogonal and
dim(CA) ≤ min{f + 1, g + 1} and even.

Proof. (i): Equation 2.2(ii) gives A2 = I and (A + I)2 = 0 (mod 2). Over the real
numbers, rank(A− rI) = v − f = g + 1, hence 2-rank(A + I) ≤ g + 1 and similarly,
2-rank(A + I) ≤ f + 1.
(ii): Now A1 = 0, A2 = I + J , and (A + I)2 = J (mod 2), proving the first two claims.
For the dimension bound see case (i).



(iii): Now Equation 2.2(ii) becomes A(A + I) = 0 (mod 2), so CA+I = C⊥A by
Proposition 3.2. The characteristic polynomial of A (mod 2) reads xv−f ′(x + 1)f ′ , so
dim(CA+I) ≥ v − f ′ and dim(CA) ≥ f ′ and, since they add up to v the result follows.
(iv): Here AA = 0 (mod 2). Similar to case (iii) we get dim(CA+I) ≥ v − f ′ − 1
and dim(CA) ≥ f ′ + 1. Now the dimensions add up to v + 1, but f ′ is odd (from
trace(A)) and v is even (since k is odd), so by Proposition 3.1 we find dim(CA) = f ′+1,
dim(CA+I) = v − f ′ and dim(CA) = v − f ′ − 1.
(v): Now A2 = kJ and (A + I)2 = kJ + I (mod 2). From k + fr + gs = 0 it follows
that k is even. By Lemma 3.1 dim(CA) is even. The rest follows by similar arguments as
above. tu

Thus, unless r and s are both even, the dimension of CA (i.e. 2-rank(A)) follows from the
parameters of Γ and similarly, dim(CA+I) follows, unless r and s are both odd (see [9]).
From the two propositions above we also see that if rs (= µ − k) is odd CA and CA+J

(= CA+I ) are determined by the parameters of Γ. Similarly, CA+I and CA are determined
if (r+1)(s+1) is odd. So in these cases non-isomorphic strongly regular graphs with the
same parameters (of which there are many examples) generate the same (trivial) codes.

3.3. Some families and their codes

3.3.1. Triangular graphs

The triangular graph T (n) is the line graph of the complete graph Kn. It follows that
T (n) is a strongly regular graph with v = n(n − 1)/2, k = 2(n − 2), λ = n − 2,
µ = 4, r = n − 4 and s = −2. T (n) is known to be determined by these parameters
if n 6= 8. If N is the vertex-edge incidence matrix of Kn, then A = N>N (mod 2) is
the adjacency matrix of T (n). The words of CN , CA and CA+I are characteristic vectors
of subsets of the edge set of Kn, so can be interpreted as graphs on a fixed vertex set of
size n. It is easily seen that CN is the n − 1 dimensional binary code consisting of all
complete bipartite graphs and that C⊥N consists of disjoint unions of Euler graphs. Note
that 1 6∈ CN .

Theorem 3.1 Let Γ be the triangular graph T (n).
If n is even then CA = CN ∩ 1⊥ (the Eulerian complete bipartite graphs), CA+I = V,
CA = V if n = 0 (mod 4) and CA = 1⊥ if n = 2 (mod 4).
If n is odd then CA = CN , CA+I = C⊥N , CA = C⊥N if n = 1 (mod 4) and CA = C⊥N ∩ 1⊥

(the unions of Euler graphs with an even total number of edges) if n = 3 (mod 4).

Proof. Since N>N = A (mod 2), we have CA ⊂ CN . First suppose n is odd. By
iii of Proposition 3.4, dim(CA) = f = n − 1, hence CA = CN and CA+I = C⊥N .
Proposition 3.1 gives CA = CA+I whenever (n − 1)(n − 2)/2 = dim(CA+I) is even,
that is n = 1 mod 4. If n = 3 mod 4, CA has dimension one less and is orthogonal to
CA and to 1. Since 1 6∈ CA, this proves the last claim. Next take n even. By i and ii of
Proposition 3.4 we find CA+I and CA. Since dim(kernel(N>)) = 1 (mod 2), dim(CA) ≥
dim(CN ) − 1 = n − 2. Clearly 1 ∈ C⊥A but (since n is even), 1 6∈ C⊥N . Therefore
C⊥A = C⊥N + 〈1〉 and so CA = CN ∩ 1⊥. tu

From Theorem 3.1 it follows that the codes CN and CA only have weights wi = i(n− i)



(0 ≤ i ≤ n
2 ). In n is odd, the number of codewords of weight wi equals

(
n
i

)
(for both

CN and CA). If n is even, CN has
(
n
i

)
codewords of weight wi for 0 ≤ i < n

2 and 1
2

(
n

n/2

)
codewords of weight wn/2. The code CA consists of the codewords from CN with even
weight.

3.3.2. Lattice graphs

The lattice graph L(m) is the line graph of the complete bipartite graph Km,m. It is
strongly regular with parameters v = m2, k = 2(m− 1), λ = m− 2, µ = 2, r = n− 2
and s = −2. If m 6= 4, L(m) is determined by these parameters. Similar to above
the adjacency matrix A = M>M (mod 2) if M is the vertex-edge incidence matrix of
Km,m. The code C⊥M consist of the edge sets of Km,m that form a union of Euler graphs.
The code CM has dimension 2m − 1 and consists of disjoint unions of two bipartite
graphs, one on m1+m2 and one on (m−m1)+(m−m2) vertices. Each choice of m1, m2

(0 ≤ m1 ≤ m, 0 ≤ m2 ≤ m/2) gives codewords of weight m1m2+(m−m1)(m−m2).
The number of these codewords equals

(
m
m1

)(
m
m2

)
if m2 < m/2 and 1

2

(
m
m1

)(
m

m/2

)
if

m2 = m/2 (but note that different choices for m1,m2 can lead to the same weight). The
weight enumerators of the codes CA now follow easily from the next result.

Theorem 3.2 Let Γ be the lattice graph L(m).
If m is even then CA consists of the graphs from CM with m1 + m2 odd, and moreover,
CA + 〈1〉 = CM and CA+I = CA = V.
If m is odd then CA consists of the graphs from CM with m1 + m2 even, and moreover,
CA = CM ∩ 1⊥, CA+I = C⊥A and CA = CA+I ∩ 1⊥.

Proof. From M>M = A (mod 2), we deduce CA ⊆ CM and dim(CA) ≥ dim(CM )−1 =
2m− 2. Let χ ∈ Fv

2 represent a subgraph of Km,m with all vertex degrees odd (if m is
odd, we may choose χ = 1). Then χ ∈ C⊥A , but χ 6∈ C⊥M , hence CA = CM ∩χ⊥. Now all
statements follow straightforwardly. tu

3.3.3. Paley graphs

Suppose v = 1 (mod 4) is a prime power. The Paley graph has Fv as vertex set and two
vertices are adjacent if the difference is a non-zero square in Fv . The Paley graph is an
SRG(v, (v − 1)/2, (v − 1)/4 − 1, (v − 1)/4) which is isomorphic to its complement.
By Propositions 3.3 and 3.4, the code CA of a Paley graph is only non-trivial if v = 1
(mod 8). Then CA and CA+I are well known as the (binary) quadratic residue codes, see
for example [15] or [29] (which are usually only defined for primes v). For v = 5, 9,
13 and 17, the Paley graph is the only one with the given parameters. If v ≥ 25, other
graphs with the same parameters exist. If v = 5 (mod 8) all these graphs give isomorphic
(trivial) codes. If v = 25 or 41 (see Section 3.5), the known non-isomorphic graphs give
non-isomorphic codes and amongst them, the codes of the Paley graphs have the largest
minimum distance. We conjecture that the second part of this statement is true in general.

3.3.4. Graphs from designs and Latin squares

Let D denote a 2-(n, κ, 1) design with incidence matrix N . Then A = N>N − κI is
the adjacency matrix of a strongly regular graph ΓD with parameters (m2 − m(m −
1)/κ, κ(m − 1), κ2 − 2κ + m − 1, κ2), where m = (n − 1)(κ − 1). We have CA =



CN>N ⊆ CN if κ is even and CA+I = CN>N ⊆ CN if κ is odd. If κ = 2, Γ(D) is a
triangular graph and the related codes are given above. If κ = 3 D is a Steiner triple
system STS(n).

A Latin square of order m (denoted by LS(m)) is an m×m matrix L with entries
from {1, . . . ,m} such that every entry occurs exactly once in every row and column.
A Latin square can be represented by a set of m2 triples (i, j, k) indicating that entry
(i, j) is equal to k. Then two triples of at most one entry in common. The Latin square
graph ΓL of L is defined on the triples (the entries of L), where two triples are adjacent
if they have an element in common (that is, the entries are in the same row, the same
column, or have the same value). Then it easily follows that ΓL is an SRG(m2, κ(m −
1), κ2 − 3κ + m,κ(κ − 1)). Let N be the 3m ×m2 incidence of this the set of triples
of a L. Then we easily have that A = N>N − 3I is the adjacency matrix of ΓL, and
CA+I = CN>N ⊆ CN .

For ΓD and ΓL, the dimensions of CN and CA+I are known in terms of the number
of sub-triple systems and quotient Latin squares, see [18], [31] and [33]. In some cases
the relation between CN and CA+I is easy.

Proposition 3.5 If D is an STS(n) then

(i) if n = 1 (mod 4) (i.e. m is even), then CA+I = CN and dim(CA+I) = n;
(ii) if n = 3 (mod 4) (i.e. m is odd), then dim(CA+I) = 2dim(CN )− n (so CA+I =
CN if and only if dim(CN ) = n).

If D represents an LS(m) then dim(CN ) ≤ 3m− 2 and

(iii) if m is odd then CA+I = CN and dim(CA+I) = 3m− 2;
(iv) if m is even then dim(CA+I) ≤ 3m− 4 with equality if and only if dim(CN ) =

3m− 2; equality also implies that CA+I = CN ∩ C⊥N .

Proof. The cases (i) and (iii) follow from Proposition 3.4 and the results about di-
mensions in (ii) and (iv) can be found in Chapter 3 of [33]. So we are left with the
last statement. We have NN> = (J3 + I3) ⊗ Jm (mod 2) and dim(CN ∩ C⊥N ) ≤
dim(CN ) − 2-rank(NN>) = 3m − 4. Moreover, NN>N = 0, so CA+I ⊥ CN and
hence CA+I ⊆ CN ∩ C⊥N and the result follows. tu

For Steiner triple systems the problem has been raised (see [38]) whether or not non-
isomorphic designs always give non-isomorphic codes CN . This is true for n ≤ 15. If
dim(CA+I) < n (the STS(n) has subsystems) then CA+I 6= CN . also the codes CA+I

are mutually non-isomorphic. However, there exist examples of non-isomorphic strongly
regular graphs with the parameters of the graph of an STS(15), but with isomorphic
codes CA+I of dimension 15 (see [24]).

The binary codes of Latin squares have also been studied by Assmus [3]. he wonders
if non-isomorphic Latin squares (regarded as nets of degree 3) give non-isomorphic codes
CN . This is true for m ≤ 7. In particular if m = 4 the codes CN of the two Latin squares
even have different dimension. However the codes CA+I of the graphs are isomorphic,
because they correspond to the same 2-(16, 10, 6) design (see the end of Section 2.3).

3.4. Two-graph codes

We briefly explain Seidel switching. For details we refer to [11] or [15]. Let Γ = (V,E)
be a graph and let {V1, V \V1} be a partition of V , then we define the result of switching



Γ with respect to this partition to be the graph Γ′ = (V,E′) whose edges are those edges
of Γ contained in V1 or V \V1 together with the pairs {v1, v2}, with v1 ∈ V1, v2 ∈ V \V1

for which {v1, v2} 6∈ E. The graphs Γ and Γ′ are said to be switching equivalent. It is not
hard to check that switching defines an equivalence relation on graphs. An equivalence
class is called a two-graph. Note that, if we switch with respect to the set of neighbors
Γx of a vertex x, then x becomes an isolated vertex in Γ′. If we order the vertices in a
suitable way then, in terms of the adjacency matrices A and A′, Seidel switching comes
down to

A =
[

A1 A12

A>
12 A2

]
, A′ =

[
A1 A12 + J

A>
12 + J A2

]
(mod 2).

Suppose we switch with respect to a subset V1 of V with characteristic vector χ. Then
we have

CA + 〈1〉+ 〈χ〉 = CA′ + 〈1〉+ 〈χ〉 .

Let us not worry about 1 and look at the codes CA+J = CA + 〈1〉 and CA′+J . It is clear
that if χ ∈ CA+J then CA′+J ⊆ CA+J . Suppose Γ and Γ′ both have an isolated vertex
(not the same one) then χ is in CA+J and CA′+J , hence CA+J = CA′+J . So this code
is independent of the isolated vertex and we will call it the two-graph code. Note that
1 6∈ CA (because of the isolated vertex), so dim(CA+J) = dim(CA) + 1 is odd.

Assume Γ is an SRG(v, k, λ, µ) with k = 2µ (or equivalently, k = −2rs). Extend Γ
with an isolated vertex x to Γ̃ (i.e. Γ̃\{x} = Γ). If we switch in Γ̃ to Γ̃′, such that another
vertex y becomes isolated, then it follows that Γ′ = Γ̃′ \ {y} is again a SRG(v, k, λ, µ),
but not necessarely isomorphic to Γ. In this case the switching class of Γ̃ is called a
regular two-graph and Γ (and Γ′) is the descendant of Γ̃ with respect to x (and y).
Clearly, the code CA of a descendant is the shortened code of the corresponding two-
graph code. Regular two-graphs can produce interesting two-graph codes. For example
the Paley graph is the descendant of a regular two-graph and the corresponding two-
graph code is the extended quadratic residue code. For other interesting two-graph codes,
see [14], [22] and [23]. If Γ̃ can be switched into a regular graph Γ̃′, then it follows that Γ̃′

is strongly regular with the same r and s as Γ, but with two possibilities for the valency:
Either k = −2rs − r or k = −2rs − s (so r and s need to be integral). On the other
hand, a strongly regular graph with degree −2rs − r or −2rs − s is in the switching
class of a regular two-graph (so isolating a vertex yields a strongly regular graph with
k = −2rs). For example the Shrikhande graph, L(4) and the complement of the Clebsch
graph are switching equivalent. We observed already that these three graphs generate the
same (6-dimensional) code. By isolating a vertex we get T (6) and the two-graph code
is a 5-dimensional subspace of the L(4) code. The shortened code (with respect to any
vertex) is the 4-dimensional code of T (6).

Theorem 3.3 Suppose Ω is a regular two-graph with eigenvalues r and s and two-graph
code C. Suppose Γ is a k-regular graph in Ω (so Γ is strongly regular) and let ∆ be the
graph in Ω with a given vertex x isolated (so switching in Γ with respect to the neighbors
Γx of x gives ∆). Let A and B be the adjacency matrices of Γ and ∆ respectively, and
let χ denote the characteristic vector of the switching set Γx. Then either



dim CA = dim CB = dim C − 1
1 6∈ CA

χ ∈ CB

CA+J = CA + 〈1〉 = CB + 〈1〉 = C

 or


dim CA − 2 = dim CB = dim C − 1
1 ∈ CA

χ 6∈ CB

CA+J = CA = CB + 〈1〉+ 〈χ〉 = C + 〈χ〉.
If k is even and r + s is odd, we are in the first case.
If k = 2 mod 4 and r + s is even, or k is odd, we are in the second case.

Proof. The results follow from the fact that

CA + 〈1〉+ 〈χ〉 = CB + 〈1〉+ 〈χ〉, CA + 〈1〉 = CA+J , C = CB + 〈1〉,

and that dim CA and dim CB are even. Clearly 1 6∈ CB , 1 ∈ CA+J and χ ∈ CA.
If 1 ∈ CA then CA = CA+J and CA = CB + 〈1〉+ 〈χ〉, so CB is a proper subspace of CA

and hence dim CA = dim CB +2 and χ 6∈ CB . On the other hand, if 1 6∈ CA, then χ must
be a codeword of CB and dim CA = dim CB . Furthermore, CA+J =CA+〈1〉 =CB+〈1〉 =
C.

If k is even and r + s is odd, then µ = k + rs is even and λ = µ + r + s is odd.
Now the rows of B corresponding to Γx add up to the characteristic vector χ of Γx. So
χ ∈ CB and hence we are in the first case.

It is clear that 1 ∈ CA if k is odd. Suppose k = 2 mod 4 and r + s is even. Then r
and s are both even (since −k = 2rs + s or 2rs + r). Let B′ be the adjacency matrix
of the descendant ∆′ = ∆ \ {x}. Then CB′ is self-orthogonal by 3.4.v. Moreover, the
degree of ∆′ is 2rs, which is divisible by 4, and hence all weights in CB′ and CB are
divisible by 4. Therefore χ 6∈ CB , so we are in the second case. tu

For example, the last statement implies that 1 ∈ CA for an SRG(36, 14, 4, 6). If k is even
and r + s is odd then C = CA+J . So, in this case, non-isomorphic switching equivalent
strongly regular graphs give isomorphic codes of the form CA+J . Examples are given by
the switching equivalent SRG(26, 10, 3, 4)’s (see the next section).

It is clear that if two two-graph codes are isomorphic then so are the codes of cor-
responding descendants. And vice versa, two descendants Γ1 and Γ2 with isomorphic
codes CA1 = CA2 give isomorphic two-graph codes. Among the regular two-graphs on
36 vertices (r = 2, s = −4) there exist several non-isomorphic ones with isomorphic
two-graph codes, therefore we also have non-isomorphic SRG(35, 16, 6, 8)’s with iso-
morphic codes CA (see [24]).

3.5. Small cases

In Table 1 we give the parameters of all primitive strongly regular graphs on at most 40
vertices (up to taking complements). We indicate how many non-isomorphic graphs there
exist with the given parameters and, if k = 2µ we give the number of corresponding
non-isomorphic regular two-graphs. In the previous sections we have obtained the codes
of several of these graphs. For the other parameters we refer to [24]. The mentioned
paper also contains the weight enumerators of most of the codes. Here we restrict to
the strongly regular graphs on 25 and 26 vertices, and the related regular two-graphs on
26 vertices. There are exactly four non-isomorphic regular two-graphs on 26 vertices
with eigenvalues 2 and −3. Together they have fifteen SRG(25, 12, 5, 6)’s (two from
LS(5)′s one of which is the Paley graph) as a descendant and ten SRG(26, 15, 8, 9)’s



no. (v, k, λ, µ) a name #graphs #two-graphs dim(CA) dim(C
A

)

1 (5,2,0,1) pentagon (Paley) 1 1 4 4
2 (9,4,1,2) L(3) 1 1 4 4
3 (10,3,0,1) Petersen (T (5)) 1 6 4
4 (13,6,2,3) Paley 1 1 12 12
5 (15,6,1,3) T (6) 1 1 14 4
6 (16,5,0,2) Clebsch 1 16 6
7 (16,6,2,2) L(4) 2 6 16
8 (17,8,3,4) Paley 1 1 8 8
9 (21,10,3,6) T (7) 1 14 6

10 (25,8,3,2) L(5) 1 8 16
11 (25,12,5,6) LS(5) 15 4 12 12
12 (26,10,3,4) STS(13) 10 12 14
13 (27,10,1,5) Schläfli 1 1 26 6
14 (28,12,6,4) T (8) 4 6, 8 28
15 (29,14,6,7) Paley 41 6 28 28
16 (35,16,6,8) STS(15) 3854 227 6,..,14 34
17 (36,10,4,2) L(6) 1 10 36
18 (36,14,4,6) HJsub 180 8,..,14 36
19 (36,14,7,4) T (9) 1 8 27
20 (36,15,6,6) LS(6) 32548 36 6,..,16
21 (37,18,8,9) Paley ≥ 6760 ≥ 191 36 36
22 (40,12,2,4) GQ(3, 3) 28 10,..,16 40

Table 1. Primitive strongly regular graphs on fewer than 45 vertices

name dim 0 4 6 8 10 12 14 16 18 20 22

s1 12 1 50 225 880 1225 1050 550 100 15

s2 12 1 10 37 279 712 1343 1140 432 124 15 3
s3 12 1 12 43 279 696 1331 1152 448 124 9 1

s4 12 1 4 54 213 868 1237 1062 546 96 15
s5 12 1 4 66 225 832 1201 1098 582 84 3
s6 12 1 3 51 213 876 1243 1056 538 96 18 1
s7 12 1 54 225 864 1225 1074 550 84 15 4

s8 12 1 6 32 291 728 1331 1122 436 132 15 2
s9 12 1 8 38 291 712 1319 1134 452 132 9

s10 12 1 7 39 295 708 1313 1140 456 128 8 1
s11 12 1 5 41 303 700 1301 1152 464 120 6 3
s12 12 1 7 35 291 720 1325 1128 444 132 12 1
s13 12 1 6 36 295 716 1319 1134 448 128 11 2
s14 12 1 7 35 291 720 1325 1128 444 132 12 1
s15 12 1 6 44 303 692 1295 1158 472 120 3 2

Table 2. Weight enumerators of the codes of the SRG(25, 12, 5, 6)’s.



0 4 5 6 7 8 9 10 11 12 13
name dim 26 22 21 20 19 18 17 16 15 14

ls11 14 1 10 65 190 325 740 1430 1826 2275 2660

st11 14 1 13 52 130 403 884 1144 1950 2483 2264
st12 14 1 13 24 52 130 403 788 1144 1950 2483 2408

ls21 14 1 4 14 69 190 309 724 1414 1826 2299 2684
ls22 14 1 4 10 69 190 309 740 1414 1826 2299 2660

st21 14 1 8 26 47 130 423 780 1164 1950 2453 2420
st22 14 1 8 22 47 130 423 796 1164 1950 2453 2396
st23 14 1 8 26 47 130 423 780 1164 1950 2453 2420
st24 14 1 8 10 47 130 423 844 1164 1950 2453 2324
st25 14 1 8 22 47 130 423 796 1164 1950 2453 2396

Table 3. Weight enumerators of the codes of the SRG(26, 15, 8, 9)’s.

(two from STS(13)′s) in the switching class, see [32] and [2]. The corresponding codes
of the form CA have been generated and the weight enumerators are given in Table 2
and Table 3 (keeping the names and order from [32]; the lines give the partition into the
four switching-equivalence classes (two-graphs)). All codes are non-isomorphic. In most
cases this follows from the weight enumerator, but in some cases more information is
needed; see [24].

It follows that also the four two-graph codes are non-isomorphic and by Theorem 3.3 we
have that the ten graphs on 26 vertices give rise to just four non-isomorphic codes of the
form CA+J (= C⊥A + 〈1〉). In other words, by deleting the words of odd weight, the ten
codes of length 26 collapse to the four two-graph codes.

4. Divisible Design Graphs

In this section we generalize the concept of a (v, k, λ)-graph, and introduce graphs with
the property that the neighborhood design is a divisible design.

Definition 4.1 A k-regular graph is a divisible design graph (DDG for short) if the vertex
set can be partitioned into m classes of size n, such that two distinct vertices from the
same class have exactly λ1 common neighbors, and two vertices from different classes
have exactly λ2 common neighbors.
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Figure 2. A proper divisible design graph



For example the graph of Figure 2 (which is the strong product of K2 and C5) is a DDG
with parameters (v, k, λ1, λ2,m, n) = (10, 5, 4, 2, 5, 2). Note that a DDG with m = 1,
n = 1, or λ1 = λ2 is a (v, k, λ) graph. If this is the case, we call the DDG improper,
otherwise it is called proper.

The definition of a divisible design (often also called group divisible design) varies.
We take the definition given in Bose [8].

Definition 4.2 An incidence structure with constant block size k is a (group) divisible
design whenever the point set can be partitioned into m classes of size n, such that two
points from one class occur together in λ1 blocks, and two points from different classes
occur together in exactly λ2 blocks.

A divisible design D is said to have the dual property if the dual of D (that is, the
design with the transposed incidence matrix) is again a divisible design with the same
parameters as D. From the definition of a DDG it is clear that the neighborhood design
of a DDG is a divisible design D with the dual property. Conversely, a divisible design
with a polarity with no absolute points is the neighborhood design of a DDG.

A DDG is closely related to a strongly regular graph. It follows easily that a proper
DDG is strongly regular if and only if the graph or the complement is mKn, the disjoint
union of m complete graphs of size n.

Deza graphs (see [19]) are k-regular graphs which are not strongly regular, and
where the number of common neighbors of two distinct vertices takes just two values. So
proper DDGs, which are not isomorphic to mKn or the complement, are Deza graphs.

4.1. Eigenvalues

With the identity matrix Im of order m, and the n × n all-ones matrix Jn we define
K = K(m,n) = Im ⊗ Jn = diag(Jn, . . . , Jn). Then we easily have that a graph Γ is
a DDG with parameters (v, k, λ1, λ2,m, n) if and only if Γ has an adjacency matrix A
that satisfies:

A2 = kIv + λ1(K(m,n) − Iv) + λ2(Jv −K(m,n)). (1)

Clearly v = mn, and taking row sums on both sides of Equation 1 yields

k2 = k + λ1(n− 1) + λ2n(m− 1).

So we are left with at most four independent parameters. Some obvious conditions are
1 ≤ k ≤ v − 1, 0 ≤ λ1 ≤ k, 0 ≤ λ2 ≤ k − 1. From Equation (1) strong information on
the eigenvalues of A can be obtained. (Throughout we write eigenvalue multiplicities as
exponents.)

Lemma 4.1 The eigenvalues of the adjacency matrix of a DDG with parameters
(v, k, λ1, λ2,m, n) are{

k1,
(√

k − λ1

)f1

,
(
−

√
k − λ1

)f2

,
(√

k2 − λ2v
)g1

,
(
−

√
k2 − λ2v

)g2
}

,

where f1 + f2 = m(n− 1), g1 + g2 = m− 1 and f1, f2, g1, g2 ≥ 0.



Proof. The eigenvalues of K(m,n) are {0m(n−1), nm}. Because Iv , Jv and K(m,n) com-
mute it is straightforward to compute the eigenvalues of A2 from equation (1). They
are

{(k2)1, (k − λ1)m(n−1), (k2 − λ2v)m−1},

and must be the squares of the eigenvalues of A. tu

Some of the multiplicities may be 0, and some values may coincide. In general, the
multiplicities f1, f2, g1 and g2 are not determined by the parameters, but if we know one,
we know them all because f1 + f2 = m(n− 1), g1 + g2 = m− 1, and

trace A = 0 = k + (f1 − f2)
√

k − λ1 + (g1 − g2)
√

k2 − λ2v. (2)

This equation leads to the following result.

Theorem 4.3 Consider a proper DDG with parameters (v, k, λ1, λ2,m, n), and eigen-
value multiplicities (f1, f2, g1, g2).
a. k − λ1 or k2 − λ2v is a nonzero square.
b. If k − λ1 is not a square, then f1 = f2 = m(n− 1)/2.
c. If k2 − λ2v is not a square, then g1 = g2 = (m− 1)/2.

Proof. If one of k−λ1 and k2−λ2v equals 0, then Equation (2) gives that the other one is
a nonzero square. If k−λ1 and k2−λ2v are both non-squares, it follows straightforwardly
that the square-free parts of these numbers are equal non-squares, hence Equation (2) has
no solution. The second and third statement are obvious consequences of Equation (2). tu

If k− λ1, or k2 − λ2v is not a square, the multiplicities (f1, f2, g1, g2) can be computed
from the parameters. The outcome must be a set of nonnegative integers. This gives a
condition on the parameters, which is often referred to as the rationality condition. Only
if k − λ1 and k2 − λ2v are both squares (that is, all eigenvalues of A are integers), the
parameters do not determine the spectrum. Then 0 ≤ g1 ≤ m − 1, so there are at most
m possibilities for the set of multiplicities.

4.2. The quotient matrix

The vertex partition from the definition of a DDG gives a partition (which will be called
the canonical partition) of the adjacency matrix

A =

 A1,1 · · · A1,m

...
. . .

...
Am,1 · · · Am,m

 .

We shall see that the canonical partition is equitable, which means that each block Aij

has constant row (and column) sum. For this, we introduce the v ×m matrix S, whose
columns are the characteristic vectors of the partition classes. Then S satisfies

S = Im ⊗ 1n, S>S = nIm, SS> = K(m,n),



where 1n denotes the all-ones vector with n entries. Next we define R = 1
nS>AS,

which means that each entry rij of R is the average row sum of Aij . We will call R the
quotient matrix of A.

Theorem 4.4 The canonical partition of the adjacency matrix of a proper DDG is equi-
table, and the quotient matrix R satisfies

R2 = RR> = (k2 − λ2v)Im + λ2nJm.

The eigenvalues of R are{
k1,

(√
k2 − λ2v

)g1

,
(
−

√
k2 − λ2v

)g2
}

.

Proof. Equation (1) gives (λ1 − λ2)K(m,n) = A2 − λ2Jv − (k − λ1)Iv . Clearly A
commutes with the right hand side of this equation and therefore with K(m,n). Thus
ASS> = SS>A. Using this we find:

SR = 1
nSS>AS = 1

nASS>S = AS,

which reflects that the partition is equitable. Similarly,

R2 = 1
n2 S>ASS>AS = 1

nS>A2S = (k2 − λ2v)Im + λ2nJm,

where in the last step we used k2 = k+λ1(n−1)+λ2n(m−1). From the formula for R2

it follows that R has eigenvalues±
√

k2 − λ2v, whose multiplicities add up to m−1. If v
is an eigenvector of R, then Sv is an eigenvector of A for the same eigenvalue. Therefore
the multiplicity of an eigenvalue ±

√
k2 − λ2v of R is at most equal to the multiplicity

of the same eigenvalue of A. This implies that the multiplicities are the same. tu

The above lemma can easily be generalized to divisible designs with the dual property.
This more general version of the lemma is due to Bose [8] (who gave a much longer
proof).

If one wants to construct a DDG with a given set of parameters, one first tries to
construct a feasible quotient matrix. For this the following straightforward properties of
R can be helpful:

Proposition 4.1 The quotient matrix R of a DDG satisfies∑
i(R)i,j = k for j = 1, . . . ,m,∑

i,j(R)2i,j = trace(R2) = mk2 − (m− 1)λ2v,

0 ≤ trace(R) = k + (g1 − g2)
√

k2 − λ2v ≤ m(n− 1).

In some cases these conditions lead to nonexistence or limited possibilities for R.

Proposition 4.2 If m = 3 and k2 − λ2v is not a square, then the following system of
equations has an integral solution.

X + Y + Z = k,

X2 + Y 2 + Z2 = k2 − 2λ2v/3,

X3 + Y 3 + Z3 = 3XY Z + k(k2 − λ2v) .



Proof. The quotient matrix R is a symmetric 3× 3 matrix with all row and column sums
equal to k and, since k2 − vλ2 is not a square, also trace(R) = k. This implies

R =

X Y Z
Y Z X
Z X Y

 ,

so trace(R2) = 3(X2 + Y 2 + Z2) = k2 + 2(k2 − λ2v). The third equation comes from
det R = −k(k2 − λ2v). tu

For example a DDG with parameters (21, 12, 8, 6, 3, 7) does not exist because X2 +
Y 2+Z2 = 60 has no integral solution. Note that Construction 4.11 gives infinitely many
DDGs that satisfy the condition of the above proposition.

Proposition 4.3 There exists no DDG for the parameter sets (14, 10, 6, 7, 7, 2), and
(20, 11, 2, 6, 10, 2).

Proof. In both cases n = 2, so trace R ≤ m. For the first parameter set this gives
a contradiction, because trace R = k = 10 and m = 7. For the second parameter
set, Theorem 4.5 implies that R = J + P for some symmetric permutation matrix P .
Therefore trace R = 10, P has zero diagonal, and the spectrum of R is {11, 14,−15}.
This implies that the adjacency matrix has eigenvalues 11, 3f1 , −3f2 , 14 and −15 where
f1 + f2 = 10. This is impossible. tu

The following result is essentially due to Bose [8] (though his formulation is different).

Theorem 4.5 Consider a DDG with parameters (v, k, λ1, λ2,m, n). Write k = mt+k0

for some integers t and k0 with 0 ≤ k0 ≤ m− 1. Then the entries of R take exactly one,
or two consecutive values if and only if

k2
0 −mk0 − k2 + km + λ1m(n− 1) = 0 .

If this is the case then R = tJ + N , where N is the incidence matrix of a (possibly
degenerate) (m, k0, λ0) design with a polarity.

Proof. If each entry of R equals t or t + 1, then in each row k0 entries are equal to t + 1
and m− k0 entries are equal to t (because the row sums of R are k). Therefore,

mk0(t + 1)2 + mt2(m− k0) = trace(R2) = mk2 + (m− 1)λ2v,

which leads to k2
0−mk0−k2+km+λ1m(n−1) = 0. Conversely, if the equation holds,

then a matrix R with k0 entries t + 1 in each row, and all other entries equal to t satisfies
the conditions of Equation 4.1. Moreover, any other solution to these equations has the
same properties. (Indeed changing some entries to integer values different from t and
t+1, such that the sum of the entries remains the same, increases the sum of the squares
of the entries). Suppose R = tJ + N for some incidence structure N , then N = N>,
and Theorem 4.4 implies that N2 ∈ 〈J, I〉, therefore N is the incidence matrix of a
(m, k0, λ) design. tu

Note that the number of absolute points of the polarity equals trace N = trace R−mt =
k+(g1−g2)

√
k2 − λ2v−mt, which is equal to k−mt = k0 if k2−λ2v is not a square.



4.3. Constructions

In this section we present some constructions of DDGs.

4.3.1. (v, k, λ) graphs and designs

We recall that the incidence graph of a design with incidence matrix N is the bipartite
graph with adjacency matrix[

O N
N> O

]
.

Construction 4.6 The incidence graph of an (n, k, λ1) design with 1 < k ≤ n is a
proper DDG with λ2 = 0.

Construction 4.7 The disconnected graph for which each component is an (n, k, λ1)
graph (1 < k < n), or the incidence graph of an (n, k, λ1) design (1 < k ≤ n), is a
proper DDG with λ2 = 0.

Proposition 4.4 For a proper DDG Γ the following are equivalent.
a. Γ comes from Construction 4.6, or 4.7.
b. Γ is bipartite or disconnected.
c. λ2 = 0.

Proof. It is clear that a bipartite or disconnected DDG has λ2 = 0. Assume Γ is a DDG
with λ2 = 0. Then in every block row of the canonical partition of the adjacency matrix
there is exactly one nonzero block (otherwise the neighborhood of a vertex contains ver-
tices in different blocks which contradicts λ2 = 0), and each nonzero block is the inci-
dence matrix of a (n, k, λ1) design. If such a block is on the diagonal it is the adjacency
matrix of a (n, k, λ1) graph with 1 < k < n. If it is not on the diagonal the transposed
block is on the transposed position, and together they make the bipartite incidence graph
of a (n, k, λ1) design with 1 < k ≤ n. tu

Construction 4.8 If A′ is the adjacency matrix of a (m, k′, λ′) graph (1 ≤ k′ < m),
then A′ ⊗ Jn is the adjacency matrix of a proper DDG with k = λ1 = nk′, λ2 = nλ′.

Proposition 4.5 For a proper DDG Γ the following are equivalent.
a. Γ comes from Construction 4.8.
b. The adjacency matrix of Γ can be written as A′ ⊗ Jn for some m×m matrix A′.
c. λ1 = k.

Proof. The only nontrivial claim is that c implies a. Assume Γ is a DDG with k = λ1.
Then any two rows of the adjacency matrix belonging to the same class are identical.
Since the blocks have constant row and column sum this implies that all blocks have
only ones, or only zeros. Therefore the adjacency matrix has the form A′ ⊗ Jn, where
A′ is a symmetric (0, 1)-matrix with zero diagonal and row sum k/n. Moreover, any two
distinct rows of A′ have inner product λ2/n. Therefore A′ is the adjacency matrix of a
(m, k′, λ′) graph. tu



Construction 4.9 Let A1, . . . , Am (m ≥ 2) be the adjacency matrices of m (n, k′, λ′)
graphs with 0 ≤ k′ ≤ n − 2. Then A = J −K + diag(A1, . . . , Am) is the adjacency
matrix of a proper DDG with k = k′ + n(m− 1), λ1 = λ′ + n(m− 1)), λ2 = 2k − v.

Proposition 4.6 For a proper DDG Γ the following are equivalent.
a. Γ comes from Construction 4.9.
b. The complement of Γ is disconnected.
c. λ2 = 2k − v.

Proof. Let x and y be two vertices of Γ. Simple counting gives that the number of com-
mon neighbors is at most 2k − v, and equality implies that x and y are adjacent. So, if
λ2 = 2k − v, then two vertices from different classes are adjacent, and hence the com-
plement is disconnected. Conversely, suppose Γ is a DDG with disconnected comple-
ment G (say). Let x and y be vertices in different components of G. Then x and y have
no common neighbors in G, and hence x and y are adjacent vertices in Γ with 2k − v
common neighbors. Therefore λ2 = 2k − v, and all vertices from different classes are
adjacent. Finally, equivalence of a and b is straightforward. tu

Note that in the above constructions the used (v, k, λ) graphs and designs may be degen-
erate. This means that the above constructions include the k-regular complete bipartite
graph (k ≥ 2), the (k + 1)-regular complete bipartite graph minus a perfect matching
(k ≥ 2), the disjoint union of m complete graphs Kn (m ≥ 2, n ≥ 3), the complete
m-partite graph with parts of size n (m ≥ 2, n ≥ 2), and the complete m-partite graphs
with parts of size n extended with a perfect matching of the complement (m ≥ 2, n ≥ 4,
n even). So these DDGs exist in abundance, and we’ll call them trivial.

4.3.2. Hadamard matrices

Construction 4.10 Consider a regular graphical Hadamard matrix H of order m ≥ 4
and row sum ` = ±

√
m. Let n ≥ 2. Replace each entry with value −1 by Jn − In,

and each +1 by In, then we obtain the adjacency matrix of a DDG with parameters
(mn, n(m− `)/2 + `, (n− 2)(m− `)/2, n(m− 2`)/4 + `,m, n).

In terms of the adjacency matrix the construction becomes:

H ⊗ In + 1
2 (J −H)⊗ Jn .

Using this, it is straightforward to check that Equation 1 is satisfied. We recall (see Sec-
tion 2.3) the two regular graphical Hadamard matrices of order 4:

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 and


−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1

1 −1 −1 −1

 .

For the first one, the DDG is the 4 × n grid, that is, the line graph of K4,n. The second
one gives DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n); for n = 2 this is
the complement of the cube. The DDGs of Construction 4.10 are improper whenever
λ1 = λ2, which is the case if and only if n = 4.



Construction 4.11 Consider a regular graphical Hadamard matrix H of order `2 ≥ 4
with diagonal entries −1 and row sum `. The graph with adjacency matrix

A =

M N O
N O M
O M N

 , where

M =
1
2

[
J + H J + H
J + H J + H

]
, and N =

1
2

[
J + H J −H
J −H J + H

]
,

is a DDG with parameters (6`2, 2`2 + `, `2 + `, (`2 + `)/2, 3, 2`2).

For the two Hadamard matrices presented above, this leads to DDGs with parameters
(24, 10, 6, 3, 3, 8) and (24, 6, 2, 1, 3, 8), respectively.

4.3.3. Divisible designs

Here we examine known constructions of divisible designs that admit a symmetric in-
cidence matrix with zero diagonal, and therefore correspond to DDGs. Clearly, we can
restrict ourselves to divisible designs with the dual property. Many constructions for
these kind of designs come from divisible difference sets. Such a construction uses a
group G of order v = mn, together with a subset of G of order k, called the base
block. The blocks of the design are the images of the base block under the group op-
eration. Thus we obtain v blocks of size k (blocks may be repeated). This construc-
tion gives a divisible design if the group G has a normal subgroup N of order n and
the base block is a so called divisible difference set relative to N . It follows from the
construction that such a divisible design has the dual property. Moreover, one can or-
der the points and blocks such that the incidence matrix becomes symmetric, and it is
also easy to find an ordering that gives a zero diagonal. The problem is to find an or-
dering that simultaneously provides a symmetric matrix and a zero diagonal. Such an
ordering is not always possible. For having a symmetric incidence matrix with zero di-
agonal, the divisible difference set should be reversible (or equivalently, it must have
a strong multiplier −1). Several reversible relative difference sets are known. For ex-
ample, for the group G = C5 × S2 = {1, a, a2, a3, a4} × {1, b} the base block
{(1, b), (a, 1), (a, b), (a4, 1), (a4, b)} is a reversible difference set relative to N = S2,
and hence gives a DDG. This DDG is the one given in Figure 2. In fact, several of the
examples constructed so far can also be made with a reversible divisible difference set.
These include all trivial examples and some of the ones from Construction 4.10. For
more examples and information on reversible difference sets we refer to [1].

Another useful result on divisible designs is the construction and characterization
of divisible designs with k − λ1 = 1 given in [20]. We recall that the strong product
of two graphs with adjacency matrices A and B, is the graph with adjacency matrix
(A + I)⊗ (B + I)− I .

Construction 4.12 Let Γ′ be a strongly regular graph with parameters (m, k′, λ, λ+1).
Then the strong product of K2 with Γ′ is a DDG with n = 2, λ1 = k − 1 = 2k′ and
λ2 = 2λ + 2.



Checking the correctness of the construction is straightforward. There exist infinitely
many strongly regular graphs with the required property. For example the Paley graphs.
But there are infinitely many others. It easily follows that the complement of a
strongly regular graph with µ − λ = 1 has the same property. Thus we can get two
DDGs from one strongly regular graph with µ − λ = 1, unless the strongly regu-
lar graph is isomorphic to the complement (which is the case for the Paley graphs).
For example the Petersen graph and its complement lead to DDGs with parameters
(v, k, λ1, λ2,m, n) = (20, 7, 6, 2, 10, 2) and (20, 13, 12, 8, 10, 2), respectively. The pen-
tagon, which is a strongly regular graph with parameters (5, 2, 0, 1), leads once more
to the example of Figure 2. In fact, several graphs coming from Construction 4.12 can
also be constructed by use of a reversible divisible difference set. This includes all Paley
graphs.

Theorem 4.13 Let Γ be a nontrivial proper DDG, then Γ comes from Construction 4.12
if and only if k − λ1 = 1.

Proof. Assume Γ is a DDG with k − λ1 = 1. According to [20] the neighborhood
design D, or its complement has incidence matrix N = (A ⊗ Jn) + Iv , where one of
the following holds: (i) J − 2A is the core of s skew-symmetric Hadamard matrix (this
means that A + A> = J − I , and 4AA> = (v + 1)I + (v − 3)J). (ii) n = 2, and A
is the adjacency matrix of a strongly regular graph with µ − λ = 1, or (iii) A = O, or
A = J−I . Case iii and its complement correspond to trivial DDGs. Case ii corresponds
to Construction 4.12 (note that N has no zero diagonal, but interchanging the two rows in
each class gives N the required property). Also the complement of Case ii corresponds
to Construction 4.12. Indeed, Jv − N = Jv − (A ⊗ J2) − Iv = (Jm − A) ⊗ J2 − Iv ,
where A, and therefore also Jm − A − Im is the adjacency matrix of a strongly regular
graph with µ − λ = 1. Finally we will show that Case i is not possible for a DDG.
Suppose PN = P (A ⊗ J) + P , or P (J − N) is symmetric with zero diagonal for
some permutation matrix P , then P is symmetric and preserves the block structure. The
quotient matrix Q of P is a symmetric permutation matrix such that QA is symmetric
with zero diagonal. We have A + A> = J − I , so J −Q = AQ + A>Q = AQ + QA,
and therefore trace(J −Q) = 2 trace(QA) = 0, so Q = I , a contradiction. tu

4.3.4. Partial complements

The complement of a DDG is almost never a DDG again. If the partition classes are the
same, then only the complete multipartite graph and its complement have this property.
The cube (which is a bipartite DDG with two classes) and its complement (which is a
DDG with four classes) is an example where the canonical partitions differ. However, if
we only take the complement of the off-diagonal blocks it is more often the case that we
get a DDG again. We call this the partial complement of the DDG. We have seen one
such example in Construction 4.12, where the partial complement can be constructed in
the same way, and hence produces no new examples. The following idea however can
give new examples.

Proposition 4.7 The partial complement of a proper DDG Γ is again a DDG if one of
the following holds:
a. The quotient matrix R equals t(J − I) for some t ∈ {1, . . . , n− 1}.
b. m = 2.



Proof. We use Equation 1. In Case a, the partial complement has adjacency matrix
Ã = J − K − A. In Section 4.2 we saw that AK = KA = ASS> = SRS>. Since
R = t(J − I) this implies AK ∈ Span {J,K}. Therefore Ã2 ∈ Span {I, J,K}, and Ã
represents a DDG.
In Case b, the vertices can be ordered such that the partial complement has adjacency ma-
trix Ã = J−K+DAD, where D = diag(1, . . . , 1,−1, . . . ,−1). The quotient matrix R
is a symmetric 2× 2 matrix with constant row sum, hence R ∈ Span {I2, J2}, and there-
fore AK = SRS>∈ Span {K2,n, Jv}, and also DADK = DAK ∈ Span {K2,n, Jv}.
Moreover, (DAD)2 = DA2D ∈ Span {Iv, Jv,K2,n}, and hence Ã2 ∈ Span {I, J,K},
which proves our claim. tu

Taking partial complements often gives improper DDGs. Conversely, the arguments also
work if Γ is an improper DDG (that is, Γ is a (v, k, λ) graph), provided Γ admits a non-
trivial equitable partition that satisfies a or b. An equitable partition of a (v, k, λ) graph
that satisfies a is a so called Hoffman coloring (see [25]). Note that the diagonal blocks
are zero, so the partition corresponds to a vertex coloring. Thus we have:

Construction 4.14 Let Γ be a (v, k, λ) graph. If Γ has a Hoffman coloring, or an equi-
table partition into two parts of equal size, then the partial complement is a DDG.

Also this construction can give improper DDGs, but in many cases the DDG is proper.
For example there exists a strongly regular graph Γ with parameters (v, k, λ, µ) =
(40, 12, 2, 4) with a so called spread, which is a partition of the vertex set into cliques of
size 4 (see [25]). The complement of Γ is a (40, 27, 18) graph, and the spread of Γ is a
Hoffman coloring in the complement. The partial complement is Γ with the edges of the
cliques of the spread removed. This gives a DDG with parameters (40, 9, 0, 2, 10, 4). By
taking the union of five classes in this Hoffman coloring, we obtain an equitable partition
into two parts of size 20. The partial complement with respect to this partition gives a
DDG with parameters (40, 17, 8, 6, 2, 20).
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