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1 Introduction
Let N , k, t, and v be positive integers. Let C be an N × k array with entries from an alphabet
Σ of size v; we typically take Σ = {0, . . . , v − 1}. When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ
for 1 ≤ i ≤ t, (c1, . . . , ct) is a tuple of t column indices (ci ∈ {1, . . . , k}), and ci 6= cj whenever
νi 6= νj , the t-tuple {(ci, νi) : 1 ≤ i ≤ t} is a t-way interaction. The array covers the t-way
interaction {(ci, νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the entry in row ρ and column
ci is νi for 1 ≤ i ≤ t. Array C is a covering array CA(N ; t, k, v) of strength t when every t-
way interaction is covered. Figure 1 gives an example of a covering array with N = 12 rows,
ten factors having two symbols, and strength three. Consider, for example, the 3-way interaction
{(2, 0), (5, 1), (6, 1)}; it is covered in the fifth and eighth rows.

1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Figure 1: CA(12;3,10,2)

We denote by CAN(t, k, v) the minimum N for which a CA(N ; t, k, v) exists; fewer rows is
what we are after. Because CAN(1, k, v) = v, CAN(t, k, v) = vt when k < t, and CAN(t, k, 1) =
1, we generally assume that k ≥ t ≥ 2 and v ≥ 2.
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Applications to interaction testing, in particular to testing component-based software, have
driven much recent research. In applications in testing, columns of the array correspond to ex-
perimental factors, and the symbols in the column form values or levels for the factor. Each row
specifies the values to which to set the factors for an experimental run. The array is ‘covering’ in
the sense that every t-way interaction appears in at least one run. Covering arrays are employed
in numerous testing applications in which experimental factors interact to detect the presence of
faults, to detect the location of faults, to detect interactions in biological networks, to generate rep-
resentative multiple sequence alignments of genomic data, and to learn an unknown function by
nonadaptive tests. They have also arisen in numerous other disguises, as t-universal sets, existen-
tially closed graphs, t-qualitatively independent sets of partitions, t-surjective codes, face transver-
sals of the n-cube, and others. For these reasons, the construction of covering arrays has been a
topic of much research.

Our primary concern is with recursive constructions that make larger covering arrays from
smaller ones by a technique of ‘column replacement’. A perfect hash family PHF(N ; k, w, t) is an
N × k array on w symbols, in which in every N × t subarray, at least one row consists of distinct
symbols. The smallest N for which a PHF(N ; k, v, t) exists is the perfect hash family number,
denoted PHFN(k, v, t). Figure 2 shows a PHF(6; 12, 3, 3). For instance, in columns 1, 3, and 5,
the first row contains 0 2 1.

0 1 2 2 1 2 2 0 1 1 0 0
0 2 1 0 2 2 2 1 0 1 2 1
1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0
2 0 1 2 1 1 2 2 0 1 2 1


Figure 2: A PHF(6; 12, 3, 3)

Perfect hash families were introduced an efficient tool for compact storage and fast retrieval
of frequently used information. In this setting, each row defines a hash function from a domain
of size k to a range of size v; we employ the array formulation instead. Perfect hash families can
be used to construct separating systems, key distribution patterns, group testing algorithms, cover-
free families, secure frameproof codes, and broadcast encryption schemes. Of particular concern
here is that perfect hash families arise as ingredients in some recursive constructions for covering
arrays.

2 Column Replacement
Our reason for interest in PHFs is that they are used to construct covering arrays:

Theorem 2.1 If a PHF(s; k,m, t) and a CA(N ; t,m, v) both exist then a CA(sN ; t, k, v) exists.

2



Proof. Let B = (bij) be an s× k array on m symbols forming a PHF(s; k,m, t). Let A = (aij) be
an N ×m array on v symbols forming a CA(N ; t,m, v). We produce an sN ×k array C = (cij) as
follows. For each 1 ≤ i ≤ s, 1 ≤ j ≤ N , and 1 ≤ ` ≤ k, set c(i−1)N+j,` = aj,bi,` . The verification
that C is a CA(sN ; t, k, v) is straightforward; one needs only check that every t-way interaction is
covered. Consider the t-way interaction {(γ1, ν1), . . . , (γt, νt)}. Because B is a perfect hash family
of strength t, it is also a perfect hash family of strength t′ for all t′ ≤ t. Therefore there is a row
ρ of B in which bρ,γi

6= bρ,γj
whenever νi 6= νj (and hence γi 6= γj). Set di = bγi

for 1 ≤ i ≤ t.
In columns (d1, . . . , dt) of A, there is a row τ in which aτ,di

= νi, because A is a covering array
of strength t and di 6= dj when νi 6= νj . But then c(ρ−1)N+τ,γi

= νi for 1 ≤ i ≤ t, and the t-way
interaction is covered in C. �

Less formally, the perfect hash family B is used as a ‘pattern’ to select columns from the
covering array A, so that every symbol σ of B is replaced by the entire column of A that is indexed
by σ.

Many improvements on Theorem 2.1 have been developed recently. We introduce the most
general one next.

The standard definition of covering array asks for all t-way interactions to be covered. We con-
sider restrictions in which all sets of t columns are treated similarly, but not all t-way interactions
need to be covered.

The species of a t-way interaction S = {(ci, νi) : 1 ≤ i ≤ t} is the multiset {νi : 1 ≤ i ≤ t};
hence a species in general encompasses a number of specific t-way interactions. (A species can be
represented as a weak composition of t with v parts, and there are

(
t+v−1
v−1

)
species.) Often we are

not concerned with the specific symbols used in defining the species. Then the family of a species
is its orbit under the action of the symmetric group on v letters, and hence a family consists of a
set of species, and by inheritance, a set of t-way interactions. (A family can be represented as a
partition of t into at most v parts.)

Let S be a set of species for t and v. An N × k array with v symbols is an S-quilting array if
every interaction whose species is in S is covered. The notation S-QA(N ; t, k, v) is used for such
an array when S contains interactions of strength at most t, and S-QAN(t, k, v) is the smallest N
for which an S-QA(N ; t, k, v) exists. An S-QA(N ; t, k, v) is equivalent to a CA(N ; t, k, v) when S
contains all possible species of t-way interactions.

We also employ variants of perfect hash families. An N × t array A on w symbols (with
columnsC = {1, . . . , t}) is (t, v)-distributing if, for every partition {C1, . . . , Cv} ofC into v parts,
there is at least one row of A, (a1, . . . , at), in which ai = aj only if i and j belong to the same class
of the partition. An N × k array is (t, v)-distributing if every N × t subarray is (t, v)-distributing;
such an array is called a distributing hash family, and is denoted by DHF(N ; k, w, t, v). An
(N ; k, v, {w1, w2, . . . , wt})-separating hash family, or SHF(N ; k, v, {w1, w2, . . . , wt}), is an (N ; k, v)-
hash family H that satisfies the property: For any C1, C2, . . . , Ct ⊆ {1, 2, . . . , k} such that |C1| =
w1, |C2| = w2, . . . , |Ct| = wt, and Ci ∩ Cj = ∅ for every i 6= j, there exists at least one func-
tion h ∈ H such that {f(y) : y ∈ Ci} ∩ {f(y) : y ∈ Cj} = ∅. A heterogeneous hash family,
denoted HHF(N ; k, (v1, . . . , vN)), is an N × k array in which the ith row contains (at most) vi
symbols for 1 ≤ i ≤ N . Often we write (v1, . . . , vN) in exponential notation: vu1

1 · · · vuc
c means

that the N =
∑c

i=1 ui rows can be partitioned into classes, so that in the ith class there are ui
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rows each employing (at most) vi symbols. These notions combine in the obvious manner to form
heterogeneous DHFs and SHFs; we denote these using DHHF and SHHF.

Let S be the set of all multisets {ν1, . . . , νt} with νi ∈ {1, . . . , v} for 1 ≤ i ≤ t. Let A
be an M × k array with v symbols. Define a function Φ with Φ : S 7→ 2{1,...,M}. Then A is a
Φ-separating hash family if for every S = {ν1, . . . , νt} ∈ S and for every choice of t distinct
columns (c1, . . . , ct), there is at least one row ρ ∈ Φ(S) in which, for 1 ≤ i < j ≤ t, row ρ has
different symbols in columns ci and cj if νi 6= νj . Such an array is denoted by Φ-SHF(M ; k, v, t).
Again we generalize to the heterogeneous case: A Φ–separating heterogeneous hash family Φ-
SHHF(M ; k, v1 · · · vM , t) contains at most vi symbols in the ith row for 1 ≤ i ≤ M , and satisfies
the same separation condition.

When Φ : S 7→ 2{1,...,M} is specified, we define a vector (Ψ1, . . . ,ΨM) so that Ψi = {S : i ∈
Φ(S)}. In words, Φ associates each t-way interaction with a set of rows of the array, while Ψi

contains the t-way interactions thereby associated with the ith row.

Theorem 2.2 Let t be a positive integer. Suppose that a Φ-SHHF(M ; k, k1 · · · kM , t) exists, and
that a Ψi-QA(Ri; t, ki, v) exists for each 1 ≤ i ≤M . Then a CA(

∑M
i=1Ri; t, k, v) exists.

Proof. Let D be a Φ-SHHF(M ; k, k1 · · · kM , t). Form E by replacing each entry j in row i of
D by the jth column of the Ψi-QA(Ri; t, ki, v). It suffices to prove that E is a covering array of
strength t. Fix a tuple C = (c1, . . . , ct) of t columns in E (equivalently, in D), and fix a t-way
interaction T by selecting value νj for column cj for 1 ≤ j ≤ t. We must show that T is covered
in E. Let W = Φ(T ), the set of rows that (together) separate T in D; then for some w ∈ W , T is
separated in row w. Because T ∈ Ψw, it is covered in the Ψw-QA(Rw; t, kw, v) and therefore also
covered in E. �

Naturally the concern with such general theorems is finding the ingredients with which to apply
them! In the presentation, we describe methods that are appropriate for making such ingredients,
and discuss consequences for the existence of covering arrays.

(This research is reported in papers by the author with Alan Ling, Pepe Torres-Jiménez, and
Junling Zhou. Copies are available from the author.)
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