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Abstract: Binary perfect sequences and their variations have applications in 

various areas such as signal processing, synchronizing and distance measuring 

radars. This survey discusses their p-ary analogs, other variations and related 

matters. Many new results are also presented. 

Introduction: 

In recent years there have been many publications on time-discrete one and two-

dimensional sequences and arrays with perfect autocorrelation functions.  Such 

sequences find applications in signal processing and as aperture functions for 

electromagnetic and acoustic imaging.  Applications of two-dimensional perfect binary 

arrays are found in 2-D synchronization (Hershey & Yarlagadda (1983)) and time-

frequency coding (Golomb & Taylor (1982)).  In his invited address at the 1991 British 

Combinatorial Conference, Golomb gave an excellent exposition on why “small 

correlations” of sequences and arrays are desirable in dealing with radar problems 

(Golomb (1991)). Some fundamental results on sequences with small correlations can 

be found in the excellent survey of Turyn (1968).  As observed by Lüke,  Bömer and 

Antweiler (1989), higher dimensional arrays are used in channel coding and in 

cryptographic coding.  Because of their applications to wide-band digital 

communications and to optical signal processing, perfect binary arrays and their related 

mathematical objects deserve further study.  Sequences with ideal autocorrelation 

property have many applications in spread spectrum communication systems such as a 

code division multiple access (CDMA) system, which has been adopted as a standard 

for multiple access method in the mobile radio communication systems.  Signal designs 

for CDMA systems have become interesting research topics in their application area.  

Other applications where sequence design is a more pressing issue include: radar and 

audio coding. (see Golomb and Gong (2005)) 

This paper surveys several related areas that pertain to sequences and arrays with 

good correlation properties.  We confine our discussion only to the “periodic” case and 

the “autocorrelation” discussions.  The “aperiodic” discussion will take us too far and 

we refer the reader to Jedwab (2008) and references therein for further study on that 

very useful topic.  For the cross correlation issues, any search engine would yield 

dozens of resources – we give only two references (Hertel (2006) and Gologlu and Pott 

(2008)).  Another intriguing related topic pertains to the study of the so-called 

“Balanced generalized weighing matrices”, for which we refer the reader to the 

excellent survey by Jungnickel and Kharaghani (2004). 
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In this survey, we shall discuss perfect sequences and perfect arrays (binary, 

ternary, quaternary, p-ary for any prime p) and certain variations of them.  Excellent 

surveys and fundamental discussions on related topics can be found in Jungnickel and 

Pott (1999a, 1999b), Cai and Ding (2009), Xiang (1992), Xiang (2005), Jedwab 

(1992,2008), and Davis and Jedwab (1997); all of which also provide a wealth of 

references. 

In section 1, we discuss binary sequences with 2-level optimal autocorrelation 

values (all of whose out-of-phase values being the same).  Section 2 will be devoted to 

the 3-level case for optimal binary sequences.  Generalization to the  multi-dimensional 

case will be the focus of study in section 3, where we also investigate the inclusion of 

zero to the binary alphabet set , terming the resulting arrays as “ternary”.  These 

latter entities turn out to be equivalent to group weighing matrices.  Section 4 will be 

devoted the “quaternary” case, primarily the 1- and 2- dimensional cases will be 

discussed.  These will be equivalent to “complex Hadamard matrices” with a group 

action, which in turn give rise to a class of relative difference sets.  Section 5 is a 

synopsis of the systematic study undertaken by Ma and Ng (2009) for the p-ary 

sequences (p any odd prime).  Their terminology may slightly differ from what we 

shall use in section 6, wherein we study the 2-level p-ary case, primarily on the 

construction arena.  Results of section 6 will serve as a preview of a rather long paper 

of Arasu, Dillon and Player (2010) which is nearing its completion.  

In the remainder of this section, we provide some basic definitions of some 

combinatorial objects that arise naturally from the sequences that we shall discuss in 

later sections.  

Let  be a multiplicatively written abelian group of order .  Let  denote the 

group ring of  over the field of complex numbers .  A subset  of  is identified 

with the group ring element which is a formal sum of the elements of  (i.e. with 

coefficients 0 and 1) and for an element  of  and integer  denotes the image 

of  under the group homomorphism  to , extended linearly to all of ; A* would 

denote  in which we also replace each coefficient of  by its complex conjugate. 

Difference sets, perfect sequences and related objects are often studied using 

character theory.  Let  be the group of characters of  (A homomorphism from a 

group  to the field of complex numbers  is called a character of ).  The principal 

character of  is defined as the homomorphism that maps each element  of  to 1.  

We shall denote the principal character by .  The character homomorphism can be 

extended linearly to the group ring.  We let the induced homomorphism from  to  

also be denoted by  . 

Definition : (Difference Set, abbr. DS) Let  be an element of  whose coefficients 

are from .  is a  difference set in  if  

                                                                                (1) 

or equivalently if 

                                                                  (2) 

where  is a multiplicative character of . 



A purely combinatorial definition of a difference set is given below: 

Definition: Let  be an (additively written) abelian group of order .  A k-subset 

 of  is said to be a  difference set in  if every non-identity element  of  

has exactly  representations as  for  and  in .) 

A difference set  is called cyclic or abelian, if  has the respective property. 

For any prime power q, we let Fq denote the finite field of order q and Fq* the 

multiplicative group of all the non-zero elements of Fq. 

 

Example: (Singer difference set) Let  for some prime  and d some 

positive integer > 2. 

Then 

                                                                                                    (3) 

is a difference set with Singer parameters.  (Here  is the Kronecker delta function 

and  is the absolute trace function of ) 

Definition: (Relative Difference Set, abbr. ) Let  be an element of  

whose coefficients are from .   is a  relative difference set in  if  

                                                                            (4) 

or equivalently if  

                                                          (5) 

Here  is a subgroup of  of order  and index  in . 

For the interplay of characters and difference sets, we refer the reader to Mann 

(1965) and Turyn (1965).  A good account of difference sets is found in Lander (1983) 

and Beth, Jungnickel, and Lenz (1999).  For a recent survey, see Jungnickel and Pott 

(1999b). Pott(1995) would serve as a nice reference for relative difference sets and 

related objects discussed in the remainder of this survey. 

1. Binary sequences with optimal autocorrelations (2-level case) 

Let  be a binary sequence  of period  for , so  and 

for each . The autocorrelation of the binary sequence  for shift  is defined as 

the following sum: 

                                                                                            (6) 



where the subscripts are modulo . 

A sequence  with a constant value of  for all possible shifts  , i.e. 

– , is said to have constant autocorrelation.  We shall say that such sequences 

have 2-level autocorrelation values, one value for the trivial shift and the second 

constant value for the remaining non-trivial shifts. The following is well known:  (e.g. 

see Turyn (1968) or Jungnickel and Pott (1999a)). 

 

Proposition 1.1:   

It is important to find such sequences that are perfect (i.e. having optimal 

autocorrelation). A perfect sequence  is defined to have the smallest possible max  

for . 

Thus, we wish to have sequences with the following autocorrelations for every  

: 

                                                                            (7) 

                                                                            (8) 

                                                                         (9) 

                                                                       (10) 

Obviously,  when  for any  binary sequence. 

Let  be a binary sequence of period . Define 

 and , which is called the difference function of 

.  Then –  where .  This would serve as a 

bridge between binary sequences and combinatorial designs. The set D defined above 

would work as the required cyclic difference set in the following result which is easy to 

prove:  

Proposition 1.2: A periodic binary sequence with period ;  entries  per period 

and 2-level autocorrelation function (with all nontrivial autocorrelation coefficients 

equal to ) is equivalent to a cyclic -difference set; where 

 . 

Detailed analysis of the 5 optimal cases of Proposition 1.2, when 

 are nicely discussed in Jungnickel and Pott (1999a).  We give a very 

brief summary here. 

Case 1:  

The case  corresponds to circulant Hadamard matrices of order , where 

, which are equivalent to cyclic – – -difference sets.  The 

only known such example is when  and is conjectured that there are no others. 

Mossinghoff (2009) has verified this for  upto , with fewer than 1600 

exceptions.  Penetrating work of Schmidt (1999, 2002) which is based on deep 



algebraic number theory provides valuable tools to study these and other related and 

similar objects.  We give one such sample result of Schmidt:
 

Theorem 1.3: (Schmidt (1999)): Let  be any finite set of primes.  Then there are 

only finitely many cyclic Hadamard difference sets of order ; where all prime 

divisors of  are in . 

Case 2:  

The case  gives rise to  cyclic difference 

sets.  While these do exist for  and , it is believed that none exists for all 

other higher values of . In fact Eliahou and Kervaire (1992) and Broughton (1995) 

have shown: 

Result 1.4: No abelian difference sets with parameters 

 exist for  between 3 and 100; consequently perfect sequences of the type 

corresponding to the constant value 1 for all the non-trivial autocorrelations  and period 

 do not exist for  between 14 and 20201. 

Case 3:  

The only systematic investigation of the case when  is due to Jungnickel 

and Pott (1999a) who show: 

Result 1.5: Perfect sequences of period  for the case  do not exist for  

between 7 and 12545; In fact, these do not exist for all periods  except 

possibly perhaps for the following four unresolved lengths in this range:  12 546,  174 

726,  2 433 602 and 33 895 686. 

We remark that the methods used to obtain the above result are standard ones from 

the theory of difference sets and with the advancement of technology, it should be 

possible to improve the bound on this result.  New non-existence results in the area of 

difference sets would also help to strengthen this result. 

Case 4:  

It is easy to see that the only difference set  corresponding to a perfect sequence 

with autocorrelation value −2 is the trivial -difference set. 

Case 5:  

Thus the only remaining case we need to discuss pertains to the case , 

which would take us to a very fertile terrain where the examples are bountiful.  In view 

of Proposition 1.2, these perfect binary sequences with  are equivalent to cyclic 

difference sets with parameters , which are commonly 

referred to as Paley-Hadamard difference sets.  We refer the reader to Beth, Jungnickel 

and Lenz (1999),  Jungnickel and Pott (1999 b), Xiang ( 1992),Xiang (2005 ),  Cai and 

Ding (2009) for further readings on these.  We shall list below the known families of 

these interesting combinatorial objects: 

(1) Cyclotomic cyclic difference sets and their sequences (Storer (1967), Beth, 

Jungnickel and Lenz (1999)) 



(2) Hall difference sets (Hall (1956)) 

(3) Paley difference sets (Paley (1933) 

(4) The twin-prime construction (Stanton and Sprott (1958)) 

(5) Singer difference sets (Singer (1938)) 

(6) Hyperoval difference sets (Maschietti(1998)) 

(7) No-Chung-Yun difference sets (No et al (1998)) 

(8) Dillon-Dobbertin difference sets (Dillon-Dobbertin (2004)) 

(9) Gordon-Mills-Welch difference sets (Gordon et al (1962)) 

2. Binary sequences with optimal autocorrelations (3-level case) 

We now turn our attention to discuss the cases where we allow two possible values for 

 for all  satisfying , referring to the underlying sequences as 

“almost perfect”. We warn the reader that the term “almost perfect” has been used with 

different meanings in Jungnickel and Pott (1999a) and Ma and Ng (2009). Jungnickel 

and Pott (1999a) variation is also of interest, and this has been investigated by Arasu, 

Ma and Voss (1997) and Leung et al (1998). The optimal criteria in the situations we 

discuss here will correspond to having autocorrelations for every : 

                                                  (11) 

                                                                    (12) 

                                                                      (13) 

                                                                      (14) 

Definition 2.1: Let  be an (additively written) abelian group of order .  A -

subset  of  is said to be a -almost difference set  of  if  takes 

the value  altogether  times and the value  altogether  times, as  runs 

over all the non-identity elements of . 

Equivalently, -almost difference set  is a subset of a group  of order 

 with  such that the „difference list‟ –  contains  

elements of  exactly times and the remaining  elements of  exactly  

times. 

Detailed analysis of the 3-level optimal binary sequences and their ADS 

counterparts can be found in the nice survey by Cai and Ding (2009).  Here we mainly 

extract the highlights given there and also provide some new results. 

Theorem 2.2: (Arasu, Ding et al (2001)) Let  be a binary sequence of period 

, and let  be its support. 



(1) Let .  Then  for all   iff  is an 

. 

(2) Let .  Then  for all    iff  is an 

. 

(3) Let .  Then  for all    iff  is an 

. 

(4) Let . Then  for all    iff D is an 

. 

We now discuss each of the 4 cases mentioned in Theorem 2.2: 

Case 1:  

The resulting difference sets are Paley-Hadamard difference sets, which are already discussed in 

section 1.  The extension of this case requiring the 3-level autocorrelations (allowing both -1 and 3 as 

autocorrelation values for  all non-trivial shifts) has not been explored yet.  The only such theorem that is 

known to us is given in: 

Theorem 2.3: (Cai and Ding (2009)): Let  be any 

 difference set in .  Define  

             (15) 

Then  is a  almost difference set in 

. Furthermore, the characteristic sequence of the set  has only the out-of-phase 

autocorrelation values , where  is any generator of .  

Case 2:  

We summarize below the known constructions of binary sequences of period 

with optimal out-of-phase autocorrelation values : 

(1) The Legendre sequences: (Legendre (1798)) Let  be a prime.  

The set of quadratic residues modulo p form an almost difference set in .  

Its characteristic sequence is the Legendre sequence with optimal out-of-phase 

autocorrelation values . 

(2) Ding-Helleseth-Lam sequences (Ding et al ( 1999)): These are equivalent to almost 

difference sets in , where  is a prime of the form  and  

and are constructed using suitable cyclotomic classes of order 4. (See Ding et all (1999) for  

details). 

(3) Ding sequences using generalized cyclotomy (Ding (1998)): Using the notion 

of generalized cyclotomy due to Whiteman (1962), Ding constructed a class of 

almost difference sets in  where  and  are primes, the characteristic 

sequences of which would serve as optimal sequences with out-of-phase 

autocorrelation values . 



Remarks: 

(1) The resulting sequences from the above three constructions can be shown to be  

inequivalent. (Ding (2010)) 

(2) There is a small history behind the 3
rd

 family discussed above, we draw it from 

http://www.cse.ust.hk/faculty/cding/200year.html. 

Stanton and Sprott (1958) discovered the so-called two-prime difference sets and 

thus the twin-prime sequences with optimal autocorrelation value -1. Whiteman (1962) 

obtained a generalization of the theorem of Stanton and Sprott.  In 1991, the two-prime 

sequences, which are a generalization of the twin-prime sequences, were described in 

Jensen, Jensen and Hoholdt (1991).  However, the autocorrelation values of the two-

prime sequences were not known until 1998. Ding (1998) determined the 

autocorrelation values under the condition that .  Mertens and 

Bessenrodt (1998) independently obtained the autocorrelation values of the two-prime 

sequences.  Thus exactly two centuries after the Legendre sequences had been reported, 

it was discovered that the two-prime sequences have optimal autocorrelation values -3 

and 1 when .  

It seems to be the case that balanced optimal binary sequences of period  when 

 always exist; we do not have a proof of this of course.  Computer experiments seem 

to suggest it.  We give the following computer generated examples of such sequences: 

Length 5 : ++--- 

Length 9 : +++-+---- 

Length 13 : +++-++-+----- 

Length 17 : ++-+++-+-++------ 

Length 21 : ++++--++-++-+-+------ 

Length 25 : +++-+-++-++--+++-+------- 

Length 29 : +++-+-+++-++-+--+++--+------- 

Length 33 : +++-+--++-+++--+++-+-++-+-------- 

Length 37 : +++-+-+-++--++++--+-++-+++--+--------  

Length 41 : +++-+-+-++--++--+-++++-+--++++--+--------  

Length 45 : ++++-+--+++--++--+-++-+++--+-+++-+-+--------- 

Case 3:  

We summarize below the known constructions of binary sequences of period 

 with optimal out-of-phase autocorrelation values : 

(1) Sidelnikov-Lempel-Cohn-Eastman sequences (See Sidelnikov (1969) and 

Lempel, Cohn and Eastman (1977)): Let  be a prime power, 

. Let g be a primitive element of the finite field .  The set 

 is an almost difference set with 

parameters  in  whose characteristic 

sequence is optimal having autocorrelation values . 

(2) Arasu-Ding-Helleseth-Kumar-Martinsen sequences (See Arasu, Ding et al 

(2001)): There are two such sequences, both of which use cyclic difference 

sets with Paley parameters  and certain Kronecker 

type composition with , thereby yielding an almost difference set in 

 with parameters – – ; the characteristic 



sequence is optimal having autocorrelation values . 

Remarks: 

(1) The Arasu-et al family (2) above is very fertile, in view of our results from the 

previous section on 2-level perfect sequences with , all of which 

yielding difference sets with Paley parameters which can be used in the 

aforementioned construction. 

(2) Use of complementary “Paley” difference sets with parameters 

 in the constructions of Arasu et al (2001) yield almost 

difference sets in  with parameters – ; the 

characteristic sequence is optimal having autocorrelation values . 

Case 4:  

We now summarize the known constructions of binary sequences of period 

 with optimal out-of-phase autocorrelation values : 

(1) Sidelnikov-Lempel-Cohn-Eastman sequences (See Sidelnikov (1969) and 

Lempel, Cohn and Eastman (1977)): Let  be a prime power, . 

Let  be a primitive element of the finite field .  The set 

is an almost difference set with parameters 

 in , whose characteristic sequence is 

optimal having autocorrelation values . 

(2) Ding-Helleseth-Martinsen sequences (See Ding,Helleseth,Martinsen (2001)): 

Since we believe that some clever insight into the ingenious construction of 

Ding,Helleseth,Martinsen (2001) might result in the use of higher order 

cyclotomic classes to obtain further classes of such sequences, we now outline 

this construction in detail. 

Let  be a finite field of prime order  and let  be a divisor of . Let  

be a primitive element of  , and define  to be the multiplicative group generated 

by . Then,  for integer , where – . 

We now let , and it is known that  for some  and  

with .  Then, 

                             (16) 

is an  (n, n/2, (n − 2)/4, (3n − 2)/4) - almost difference set in Z2 × Zp , if  

                                     (17) 

or 

                                    (18) 

The above constructions correspond to balanced perfect sequences of period 

.  The following constructions give almost balanced perfect sequences: 



Let , and  for some  and  with . 

Then, 

                                          (19) 

is an , if  

                                                            (20) 

or 

.                                                          (21) 

The aforementioned almost difference sets readily give the optimal binary 

sequences having autocorrelation values . 

We close this section by giving the following two new examples due to Arasu and 

Little (2010) based on computer searches: 

(1)  is a  

-almost difference set in . 

(2)  

 is a –almost difference set in . 

We give the corresponding balanced optimal binary sequences below: 

Length 38:  ++--++++--+-++------+-+-+++-+--+-+++-- 

Length 50: +++-++--+++-+--+++++--+-+-+-++-+--++-+-++--------- 

Helleseth (2002) provides the following two balanced binary optimal sequences of 

length 34: 

+-------+-++--+-+++--+-+++--+++-++ 

+-------+-++-+-+-+++++---+++--++-+ 

The above three examples are balanced – in the sense, the number of 1's and -1's in 

the sequence is the same; the term “almost balanced” would mean that the number of 

1's and number of -1's nearly equal. (differ by 1 or 2 depending on the length of the 

sequence is odd or even).  Although an almost balanced optimal binary sequence of 

length 14 exists, a balanced one cannot (for a proof see Arasu and Pott (2009)). 

We close this section by asking: 

Questions: Are there other families of perfect binary sequences of period 

 that can be constructed, balanced or otherwise?  Do balanced perfect 

sequences of periods   exist?  

Remark: The periods listed above are the only open cases for , when 

. 



3. Perfect arrays 

An r-dimensional matrix  with  is called an 

 array.  The array is called perfect if the periodic autocorrelation 

coefficients 

                                                                                                                 (22) 

are zero for all .  The array is binary if each 

matrix entry is .  The array is ternary if the entries lie in .  The invertible 

mapping from the binary array  to  gives rise 

to an equivalence between an  perfect binary array and a Hadamard 

difference set (also called Menon difference set) in  (See Jedwab (1992) 

and Davis and Jedwab (1997)). 

There is a vast literature in the area of Hadamard difference sets – we refer the 

reader to Beth, Jungnickel and Lenz (1999) and the Bibliography provided there for the 

study of this very important combinatorial structure.  We just summarize below as a 

theorem which contains the current state of the art of the abelian groups that contain a 

Hadamard difference set. 

Theorem 3.1: Let  where  is an abelian 

group of order  and exponent at most  are non-negative integers 

such that for some non-negative integer  and  are odd primes.  Then 

 contains a Hadamard difference set. 

The “smallest” open cases are : .   

A study of perfect binary arrays (and Hadamard difference sets) would be 

incomplete without mentioning the names of some very important players and 

contributors in the field: W.K. Chan, Y.Q. Chen, J. Davis, J.F. Dillon, J. Iiams, W.M. 

Kantor, R.G. Kraemer, R. Liebler ,S.L. Ma, R.L. McFarland, D.B. Meisner, P.K. 

Menon, C. Mitchell, F.C. Piper, D. K. Ray-Chaudhuri, B. Schmidt, S.K. Sehgal, M.K. 

Siu, K. Smith, V. Tonchev, R.J. Turyn, P.R. Wild, X. Wu, R.M. Wilson, M.Y. Xia,Q. 

Xiang, M. Yamada, and K.Yamamoto. 

 A recent exposition of Hadamard difference sets containing some beautiful 

examples is Dillon (2010).  Dillon (2010) gives several perfect multidimensional arrays 

and synchronization patterns with colorful pictures. 

 

In the remainder of this section, we shall discuss perfect ternary arrays (See Arasu 

and Dillon (1999) for a survey on this topic). We begin by introducing “group invariant 

matrices” (which are also referred to as “group developed matrices”). 

Let  be a group of order  (  need not be abelian, but we write  additively).  

An  matrix  indexed by the elements of the group  (so  and  belong 

to ) is said to be -invariant (or -developed) if it satisfies the condition  

                                                                  (23) 



 is said to be circulant if the underlying group  is cyclic.  Thus the matrix  is 

completely determined by its first row. 

Let  denote the group ring of a given group  over a ring .  Then the set of -

invariant matrices with entries from  is isomorphic to the group ring .  

A weighing matrix  is a square matrix of size  all of whose entries lies in 

 satisfying 

                                                                                                       (24) 

where  is the  identity matrix. 

Note that  must have exactly k entries which are nonzero.   is called the weight 

of .  If  is the incidence matrix of a symmetric design, then the 

weighing matrix  is said to be balanced.  Examples of balanced weighing matrices 

include Hadamard matrices  and conference matrices . We let 

CW(n,k) stand for a circulant weighing matrix of order n with weight k. 

Each class of group invariant matrices can be described as a group ring equation.  

This group ring formulation of the problem is generally used to obtain existence and 

nonexistence of these objects.  Hence the study of these group invariant matrices uses 

character theory and algebraic number theory.   

We now turn our attention to perfect ternary arrays, drawing freely from the 

survey of Arasu and Dillon (1999). 

Antweiler, Bomer and Luke(1990) first introduced the term perfect ternary array 

but 1-dimensional examples were known in the literature earlier under name of perfect 

ternary sequences or circulant weighing matrices, (see Chang (1997), Dillon (1979), 

Eades and Hain (1976), Games (1986), Geramita and Seberry (1979), Høholdt and 

Justensen (1983), Ipatov, Platonov and Samilov(1983), Mullin (1975), Mullin and 

Stanton (1975,1976), Vincent (1989) and Whiteman (1975).) Moreover, Jedwab‟s 

(1992) results on generalized perfect arrays apply to the ternary case as well. 

Let  be an  PTA.  The number of nonzero entries in  is called 

energy of  and is denoted by .  The ratio  is called its energy 

efficiency. 

The following is easy to prove; it gives the connection between perfect ternary 

arrays and group invariant/developed matrices. 

Proposition 3.2: The existence of an  PTA with energy  is 

equivalent to the existence of two disjoint subsets  and  of  

satisfying , and hence equivalent to existence of a G-

developed matrix . 

The next result is well known and easy to prove (see Mullin (1975), e.g.) 

Proposition 3.3: Assume the existence of a G-developed weighing matrix 

. Then 



(1)  for some integer ; 

(2) –  

The following is an easy “composition” and “imbedding” theorem. 

Theorem 3.4:  

(1) If there exists a G-developed matrix , then there exists an H-

developed matrix  for all groups  containing a subgroup 

isomorphic to G. 

(2) If there exists a , then there exists a  for all positive 

integers . 

(3) Suppose that . Then there exists a -developed 

matrix  if there exists a . 

(4) If there exists -developed matrix , then there exists a 

-developed matrix . 

Our next theorem uses the well known idea of “orthogonal pieces”; an explicit 

proof is in Arasu and Dillon (1999). 

Theorem 3.5: if there exists a  with „ ‟ odd, then there exists a 

 for all odd . 

An extension of theorem 3.5 to the abelian case is given below: 

Theorem 3.6: Let H be an abelian group and let  for . 

Assume that following three conditions are satisfied: 

(1) The coefficients of each of the ‟s are  and  

(2)  

(3)  for all  

Moreover, let  be an abelian group containing  as a subgroup of index . 

Then there exists a -developed matrix  

Our next result contains essentially the only infinite family of CWs (the minimal 

one‟s). 

Theorem 3.7: For each prime power  and positive integer  , there exists a 

– . 

The result of Theorem 3.7 has an interesting history.  Using the so-called “affine 

difference sets‟‟ of Bose (1942) and Elliot and Butson (1956), the CWs of the Theorem 

2.9 for odd  can be easily obtained by taking a suitable homomorphic image of the 



underlying relative difference set.  The reader may consult Arasu, Dillon, Jungnickel 

and Pott (1995), Elliot and Butson (1956) and Pott (1995) for more details.  The  odd 

case was independently obtained by Eades (1977,1980).  The case  odd and  is 

also contained in Wallis and Whiteman (1975).  Using shift register sequences, Ipatov 

(1979, 1980) obtained CWs in the odd  case using the PTS language. 

The case  even was first reported by Dillon (1979); Games (1986) and Høholdt 

and Justesen (1983) are the first published results for the  even case (using PTS 

language).  Details of Dillon‟s (1979) constructions appeared in Arasu, Dillon, 

Jungnickel and Pott (1995). 

The other known sporadic examples of CW  have  equal to 

,  and .  

A CW  was first found by Antweiler, Bömer and Lüke (1990) using a 

computer; a theoretical explanation of this example is due to Arasu and Torban (1997).  

A CW  is contained in Strassler (1997) and Ang et al (2008).  This was first 

discovered by Vincent (1989) via computer search.  Strassler (1998) found examples of 

CW  and CW .  These two can be easily obtained using the well known 

notion of “multipliers”. 

Jedwab and Mitchell (1988) and Wild (1988) obtain larger PBAs from smaller 

ones by combining them with the so called “quasiperfect binary arrays”.  These ideas 

were extended to the ternary case by Vincent (1989) and Antweiler, Bomer and Luke 

(1990).  The most general -ary case is dealt with by Jedwab (1992).  The importance 

of these composition theorems can be seen in the work of Vincent (1989), where she 

constructs a new CW  using a CW  and what she calls as a quasiperfect 

ternary sequence of length 24 and weight 9.  Modifying the "orthogonal pieces" ideas 

of Arasu & Dillon (1999), Arasu, Koukivinos et al (2010) have found a new perfect 

ternary sequence of length 142 and weight 100, which gives new examples of circulant 

weighing matrices, answering previously unknown cases affirmatively. 

There are several non-existence results for CWs (see Arasu and Ma (2001), Arasu 

and Seberry (1996)).  We begin with a “reduction theorem”: 

Theorem 3.8: (Arasu (1998)) Suppose that a  exists where  is a 

prime,  and  are positive integers satisfying .  

Assume for an integer .  Then  and  and there exists a 

. 

A G-developed weighing matrix W is called proper if there is no proper subgroup 

H of G such that W is H-developed. 

The next three theorems are due to Arasu and Ma (2001). 

Theorem 3.9: (Arasu and Ma (2001)) Let 

 and  is a prime greater than 3.  Then, a proper G-developed 

W  for all  does not exist. 

Theorem 3.10: (Arasu and Ma (2001)) Let 

 and  is a prime greater than 7.  If  is odd or  is strictly 

divisible by 2 or , then a proper G-developed  does not 

exist. 



Theorem 3.11: (Arasu and Ma (2001)) Let ,  is 

an odd prime, , and . Then, a proper G-developed 

 does not exist. 

The next theorem is an extension to the abelian case of the cyclic version of a 

theorem due to Arasu and Seberry (1996): 

Theorem 3.12: (Arasu and Hollon (2010)) Suppose that a G-developed  

exists for an abelian group G of order n.  Let p be a prime such that  for some 

.  Further let H be a subgroup of G, of order .  Write , 

where P is the cyclic Sylow p-subgroup of  and .  Assume also that 

there exists an  such that . Then, 

(1) If p divides m, then  

(2) If p does not divide m, then  

Lengths of perfect ternary sequences (equivalently circulant weighing matrices) of 

small weights have been classified: 

(1) Eades and Hain (1976) Perfect ternary sequence of length  with weight 4 

 exists if and only if  is divisible by 2 or 7. 

(2) Ang, Arasu, Ma & Strassler (2008), Strassler (1997) Perfect ternary sequence 

of length  with weight 9 exists if and only if  is divisible by 13 or 24. 

(3) (Arasu, Leung et al (2006)) Perfect ternary sequence of length  with weight 

16 exists if and only if  is divisible by 21 or 31 or 14.  (Here ). 

Strassler (1997) has a table of parameters  for  and discusses the 

existence status of the corresponding .  Arasu and Gutman (2010) fill over 

50 missing entries of Strassler‟s table.  Group weighing matrices have been 

systematically studied by Ang (2003).  Arasu and Hollon (2010) investigate group 

weighing matrices in the abelian case and provide a table, when weights and group size 

do not exceed 100.  

For some interesting results and conjectures on circulant weighing matrices with 

large weights, we refer the reader to section 5 of Arasu and Dillon (1999). 

We next extract some very interesting recent results of Leung and Schmidt (2010) 

regarding “finiteness”.  We need some definitions first: 

Let  denote the cyclic group of order .  For a divisor  of , we identify the 

subgroup of order  of  as . 

Definition 3.13: Let  be a positive integer, let  be a divisor of , and let  be a 

generator of .  Every  can be uniquely written in the form: 

                                                                       (25) 

If  for all , then we say that  is orthogonal over .  We say that a 

subset of S of  is orthogonal over  if every element of  is orthogonal over  . 



Definition 3.14: Let  be a positive integer and let   be a finite set of 

elements of  with  for all . We call  an orthogonal family over  if 

  for all .  We call  reducible if there is a proper divisor  of  such 

that  is orthogonal over  and irreducible otherwise.  If  when  is 

an integer, we say that  has weight  .  

Definition 3.14: Let  be a positive integer, let  be divisor of  and let 

 be an orthogonal family over .  We say that  is a coset 

combination of  if  has the form: 

                                                                                                     (26) 

where  are representatives of distinct cosets of  in . 

The following is the main result of Leung and Schmidt (2010). It shows that for 

fixed n, all circulant weighing matrices of weight  can be determined by a finite 

algorithm. 

Theorem 3.15: Let  be a positive integer. 

(1) Every circulant weighing matrix of weigh  is a coset combination of an 

irreducible orthogonal family of weight . 

(2) The number of irreducible orthogonal families of weight  is finite and they 

can be enumerated by a finite algorithm. 

In the case where the weight is an odd prime, they go much further.  To formulate 

their result  this case we need some more terminology. 

Definition 3.16: Let  be an orthogonal family over  (recall that 

this requires  for all ).  We call  nontrivial if .  We say that  has 

coefficients  if all  have coefficients  only. 

Theorem 3.17: There is no nontrivial orthogonal family with coefficients  of 

an odd prime weight.  

Corollary 3.18: Let  be an odd prime power, then there are at most finitely many 

proper circulant weighing matrices of order .  

We close this section by providing an application of perfect ternary sequences to 

self dual codes.  It is easy to show that perfect ternary arrays are equivalent to weighing 

matrices that admit a regular group action.  If  is a suitable weighing matrix of order 

, then it can be shown that  generates a ternary self-dual code of length .  

Perfect ternary arrays yield an interesting class of self-dual codes, as in Arasu & 

Gulliver (2001). Arasu (2004) and Arasu, Chen, Gulliver and Song (2006), who 

discovered a new ternary self dual code  whose minimum distance 24 beats 

all the previously known such codes.  The best previously known ternary  code 

has a minimum distance 19.  Their new code has the generator matrix , where 

 and  is the negacyclic matrix whose first row is  

122221211111112112212211012211122111212121111212 



The aforementioned initial row is theoretically obtained using Theorem 3 of Arasu, 

Chen, Gulliver and Song (2006) and the symbol “2” in the first row denotes -1. It turns 

out that the codes of Arasu, Chen, Gulliver and Song (2006) are equivalent to the Pless 

symmetry codes (Pless (1972)). A proof of this equivalence is in Arasu, Chen, Gulliver 

and Song (2006). Computing its minimum distance as 24 took 53 days of computing 

time.  

4. Perfect quaternary arrays 
 

Arasu & de Launey (2001) and Arasu, de Launey and Ma (2002) investigate 

complex Hadamard matrices and perfect quaternary arrays. 

A perfect quaternary array (PQA) is a  array of fourth roots of unity 

 with perfect periodic autocorrelation properties, i.e.  

                                                                        (27) 

whenever the offset  is non-zero. 

Examples: 

(1)  is a  is a perfect quaternary array. 

(2)  is a  is a perfect quaternary array. 

(3)  is a  perfect quaternary array. 

The known 2-dimensional examples of perfect binary arrays have their dimensions 

restricted to , where , , and  unless 

.  But the answer to the existence for perfect quaternary arrays appears to be 

very different. 

Arasu & de Launey (2001) show: perfect quaternary arrays are equivalent to 

relative difference sets in , relative to the subgroup  

which is contained in .  Using this nice connection and algebraic techniques, 

several new families of perfect quaternary arrays have been constructed. 

A few examples have already been discovered.  Some of the new arrays obtained 

have dimensions: 3 6, 3  24, 6 12, 6 48, 12 24, 12 96, 24 48, 48 96, 51

102, 14 14, 7 28, 14 28, 28 28, 7 56,  14 56, 28 56, 21 84, 42 42, 42 84, 

84 84, 18 9, 72 9 and 54 27. 

Examples of Two dimensional Perfect Quaternary Arrays 

Example 4.1 (Arasu & de Launey [2001]): A PQA(2,2) is shown below: 

                                                                                                              (28) 

Example 4.2 (Arasu & de Launey [2001]): A PQA(3,6) is displayed below: 



                                                                          (29) 

Example 4.3: A PQA(14,14) is given in Arasu & de Launey [2001]. 

It should be possible to obtain several new classes of quaternary arrays ,  surely for 

dimensions higher than 2, using  the techniques of Arasu and  (2001), as their 

investigation focused only on the 2-dimensional case and routine generalization must 

yield results for higher dimensions. 

PQA‟s are very closely connected to complex Hadamard matrices.  We now 

describe how any PQA  leads to a complex Hadamard matrix with the bicyclic 

group  acting regularly.  The concept of regular action of a group on a 

combinatorial object is important in combinatorial mathematics, but here it is of 

peripheral interest.  A complex Hadamard matrix of order  is an  matrix , say, 

whose entries are fourth roots of unity and which satisfies the equation 

                                                                                                          (30) 

Here  is the Hermitian adjoint of .  It is obtained by forming the transpose of  

and replacing each entry by its complex conjugate. 

For each pair of integers  and , where , define the integers 

 and  by the relations  and , where 

 and , and set – –  where the arithmetic in the 

indices of  is done modulo  and  respectively. 

Now suppose the  array  is a PQA .  Define the  

matrix  to be the matrix whose -th entry is .  Then the -th entry of 

 is 

  

                             (31) 

Putting –  and – , the right hand side becomes 

  

                                                                           (32) 

Hence, , and  is indeed a complex Hadamard matrix of order .  

The additional property that  depends only on the values of  and 

 confers on  the aforementioned  regular action. 

Complex Hadamard matrices were first discussed in Turyn (1970).  The matrix 

 is said to be circulant if, for all .  Here the 

difference j i is computed modulo . 



Example 4.4: The circulant matrices with first rows  

 

 

 

 

are complex Hadamard matrices of the respective orders . 

The following are well known: 

Theorem 4.5: If there is a circulant complex Hadamard matrix of order , then  is 

the sum of two squares.  

Theorem 4.6: (Turyn (1970)) There are no circulant complex Hadamard matrices of 

order  for  or  where  is an odd prime. 

Using Turyn type arguments (Turyn (1965)) and techniques of (Ma (1985)), 

Arasu,  and  Ma (2002) prove several nonexistence theorems.  We only state a few of 

them here. 

Theorem 4.7: (Arasu,  and Ma (2002)) Suppose  is a prime.  Let 

 be an integer such that .  Let  be an odd integer, 

.  If there exists a circulant complex Hadamard matrix of order , then 

. 

Lemma 4.8: (Arasu,  and Ma (2002))  Let  with  an integer 

relatively prime to  and  an abelian group of order  which contains an element  of 

order .  If  satisfies , for all characters  of  with 

, where  is a polynomial in  such that  and 

 are relatively prime, then  

                                                                           (33) 

where  and  are all prime divisors of . 

Lemma 4.9: (Arasu,  and Ma (2002) Let  be a cyclic group of order 

.  Let  be an odd prime such that ,  and 

.  If  satisfies  for a character  of  of order 

, and if one of the following is true: 

(1)  

(2)  

(3)  mod  for a character  of  of order , then 



                                                                 (34) 

where  are all prime divisors of  and  are 

integers relatively prime to  such that  with  if  if 

. (Note that  are unique up to signs and permutations.) 

Lemma 4.10:  (Arasu,  and Ma (2002)) Let  be an abelian group 

where  and  is odd.  Suppose 2 is self-conjugate modulo exp .  

If  satisfies  mod  for all characters  which are 

nonprincipal on , then 

                                                           (35) 

where  and . 

(Here 2 is self conjugate modulo exp  means  (mod exp ) for some 

integer l).  

For non-existence results, we have only stated the above sample lemmas (further 

extensions of the lemmas are likely and would yield stronger results).  (See Arasu, de 

Launey and Ma (2002) and Arasu and Ma (2001) for more such results). 

Using Schmidt‟s results (Schmidt (1999, 2002)), we obtain the following: 

Theorem 4.11: (Arasu,  and Ma (2002)).  Let  be a finite set of primes, and let 

 be the set of integers whose prime divisors all lie in P. Then there are finitely many 

circulant complex Hadamard matrices with orders in .  

We conclude this section by making the following remark: 

Remark: The following eleven orders of circulant complex Hadamard matrix up to 

1000 have yet to be excluded: 260, 340, 442, 468, 520, 580, 680, 754, 820, 884, 890.  In 

view of the conjecture that there is no circulant Hadamard matrix of order greater than 4, 

it is tempting to conjecture that there is no circulant complex Hadamard matrix of order 

greater than 16. 

5. p-ary sequences 

Ma and Ng (2009) follow the approach of Turyn (1968) and study the complex p-ary 

sequences, where p is an odd prime. 

Definition 5.1: Let  be a complex sequence.  The sequence  is called a 

complex -ary sequence if  where  is a primitive  -th root of unity in  and 

.  Also  is said to be periodic with period , if  for all .  

Suppose  is a periodic complex -ary sequence of  period .  The autocorrelation function  of 

 is defined by 

                                                  (36) 



All autocorrelation coefficients  with  are called out-of-phase 

autocorrelation coefficients.  A periodic sequence  is said to have a two-level 

autocorrelation function if all the out-of-phase autocorrelation coefficients are equal to a 

constant .  In particular, the sequence a is called a perfect sequence if  and a 

nearly perfect sequence if . 

The binary perfect and nearly perfect sequences, i.e., , were discussed in 

Sections 1 and 2.  The case  has been studied by Turyn (1970) and Arasu,  and 

Ma  (2002).  (See Section 4 of this survey).  In this section, we shall discuss the case 

when  where  is an odd prime, basically summarizing the results of Ma and Ng 

(2009). 

Theorem 5.2: (Ma and Ng (2009)) Let  be a prime and let  be  a 

periodic sequence for period  where  and .  Let  be 

an abelian  group  where , , , and .  Then  is a perfect 

sequence if and only if  is an -relative 

difference set in  relative to , i.e., 

                                                                                (37) 

In view of Theorem 5.2, to study complex -ary perfect sequences is equivalent to 

study the -relative difference set.  We list below some examples found 

from the literature.  We are only interested in the case where  is an odd prime.  

Example 5.3: (Ma and Schmidt, 1995, Theorem 2.2.9)  Let and  

                                                                         (38) 

Then  is a -relative difference set in  relative to .  So 

we have a complex -ary perfect sequence of period : 

                                                                                    (39) 

Example 5.4: (Ma and Schmidt, 1995, Theorem 2.3)  Let and 

                                                                              (40) 

Then  is a -relative difference set in  relative to .  

So, we have a complex -ary perfect sequence of period . 

           (41) 

Definition 5.5: Let  be a periodic complex -ary sequence. 

(1) If the out-of-phase autocorrelation coefficients of a are all equal to 1, we 
say that  is a type I nearly perfect sequence.  

(2) If the out-of-phase autocorrelation coefficients of a are all equal to 1, we 
say that a is a type II nearly perfect sequence.  



Theorem 5.6: (Ma and Ng (2009)) Let p be a prime and let  be 

a periodic sequence of period of n where .  Let 

 be an abelian group where , , , and 

.  Define .  Then 

(1)  is type I nearly perfect sequence if and only if  is an 

- direct product difference set in  relative to  and , i.e., 

                                                                (42) 

and 

(2) a is a type II nearly perfect sequence if and only if  is an 

-direct product difference set in  relative to  and , i.e., 

                                                              (43) 

Example 5.7: (see Helleseth and Kumar, (1998), Section 3.1)  Let  be a prime and 

 be a power of .  Let  be the finite field of order  and  be the subfield of  of 

order .  Then 

                                                                                    (44) 

is a  -direct product difference set relative to 

 and  where  is the group of the units of .  So we have a 

complex -ary type I nearly perfect sequence of period : 

                                                                              (45) 

where  is a primitive element of . 

6. -ary sequences via Gauss sums 

In this section, we discuss a few important results on some new constructions of p-ary perfect 

sequences due to Arasu, Dillon and Player (2010).  Detailed proofs of their results on new 

constructions of p-ary sequences using Gauss sums and Stickelberger combinatorics are 

provided in Arasu, Dillon and Player (2010).  Here we provide only some of the main ideas of 

their construction methods.  

We begin by reformulating an earlier definition for “complex” valued sequences. 

For a sequence  of length , where each  is a 

complex number, its periodic autocorrelation coefficients are defined by: 

                                             (46) 



where the subscripts are taken modulo .  We shall investigate -ary sequences (  

any prime), whose entries are -th roots of unity satisfying 

                                                                       (47) 

We alert the reader that p-ary sequences that satisfy (47) are referred to as almost 

perfect p-ary sequences of type I as we saw in section 5.  But we shall call these 

“perfect” sequences in this section.  

Let 
 
for some prime .  Throughout this section, we will assume that the 

group  is either   or , which is a cyclic group. 

We now define the well-known notion of a perfect sequence using group rings.  

Note that this definition implies that all the out-of-phase autocorrelations are minus 

one. 

Definition 6.1: (Perfect Sequence, abbr. PS) Define  to be an arbitrary subring of 

 generated by some set .   is usually taken to be the set of n-th roots of unity for 

some positive integer . Let  be an element of  whose coefficients are from .  

Then  is called a perfect sequence in  if  

                                                                                        (48) 

or equivalently if 

                                                                  (49) 

Here  denotes the field of complex numbers. 

Example: ( -sequence) Let for some prime  and  a positive integer.  

Then  is perfect. 

Throughout this paper,  denotes a finite field with m elements. 

It can be easily seen that the above definition of perfect sequences is equivalent to 

the standard one.  

Definition 6.2: (Generalized Weighing Matrix, abbr.. GWM) Let  be an arbitrary 

subring of  generated by some set  where  is taken to be the set of -th roots of 

unity for some positive integer  together with .  Let  be an element of  

whose coefficients are from .  Let  be some positive integer.   is called a 

generalized weighing matrix of weight  in  if 

                                                                                                             (50) 

or equivalently if 

                                                                                                (51) 



It is well-known that binary perfect sequences are equivalent to difference sets 

with Singer parameters.  But the -ary case (for an odd prime ) behaves very 

differently; we are able to show that perfect -ary sequences are equivalent to a class of 

generalized weighing matrices, as defined above, which in turn give rise to a class of 

relative difference sets which are extensions of Singer parameters (i.e. the images of 

these relative difference sets under the canonical homomorphim when mod out by the 

“forbidden” subgroup is a difference set with Singer parameters (up to 

complementation)).  This was the reason why we have introduced the above definitions 

using the group ring notation. 

There has been much research activity in the binary case area during the last 

decade.  All of the known binary perfect sequences (equivalently cyclic difference sets 

with Singer parameters), except for the GMW-sequences, the ones that arise from 

cyclotomy, and the Hall sets, are contained in the following two theorems: 

Theorem 6.3: (Dillon, Dobbertin (2004)): Let  be any integer in the range 

 which is coprime to .  Let and let 

 for all .  Then the punctured image 

 of corresponds to a perfect binary sequence of length .  Moreover, these 

perfect sequences are pairwise inequivalent. 

Theorem 6.4: (Dillon, Dobbertin (2004))  Let  be an integer which is not 

divisible by 3, and let  be a natural number such that .  Let 

 and let  for all   Let 

                                          (52) 

Then  corresponds to perfect binary sequences. 

Researchers have become interested in the -ary case, where  is an odd prime.  

-sequences and the  sequences are two well understood families of perfect -

ary sequences of length  which have been known for several decades.  Aside 

from these, there are perfect sequences due to the work of Dillon (2002), Helleseth, 

Kumar and Martinsen (2001),  Helleseth and Gong (2002), and Lin (1998), as stated 

below: 

Theorem 6.5: (Dillon (2002))  Let  be any odd prime and let 

  For every even integer k, , let  be the 

quadratic form given by  and let  be the related function 

given by , where  is the odd part of . Then  

is perfect. 

Theorem 6.6: (Helleseth, Gong (2002)) Let α be a primitive element of .  Let 

 and let  be an integer such that .  

Define 

                                                                                    (53) 

and let  for   Suppose  and 

 for  then the sequence over  defined by  



                                                                                             (54) 

is perfect, where indices of  are taken mod . 

Theorem 6.7: (Helleseth, Gong (2002))  Let α be a primitive element of   Let 

 and let  be an integer such that .  

Define 

                                                                         (55) 

and let  for   Suppose  and 

 for  then the sequence over  defined by 

                                                                                             (56) 

is perfect, where indices of  are taken mod . 

Theorem 6.8: (Helleseth, Kumar, Martinsen (2001))  Let  and 

let  be a primitive element of .  Then the sequence  is 

perfect. 

Finally, Lin has made the following conjecture: (see Lin 1998) 

Conjecture 6.9: (Lin (1998)) Let , and let  be a primitive element 

of   Then the sequence  is perfect. 

These recent results and Lin‟s conjecture, having as they do rather tantalizing 

similarities, have stimulated a lot of interest.  The proofs of the known results are 

elegant but ad hoc.  So far these direct methods have not yielded a proof of Lin‟s 

conjecture.  Recently, Arasu, Dillon and Player (2010) have proved Lin‟s conjecture.  

The method of proof is very different from the standard methods.  The new approach is 

described in what follows. 

For convenience, we define the Gauss and Jacobi sums now: (here  and  are 

multiplicative characters of the finite field in question.  By convention, 

). 

Definition 6.10: (Gauss Sum) The Gauss Sum on  over  denoted  is 

defined to be 

                                                                                        (57) 

(Here is a primitive -th root of unity and is a multiplicative character of  

with  

Definition 6.11: (Jacobi Sum) The Jacobi Sum on  and  denoted  is 

defined to be: 

                                                                              (58) 



(Here  and  are multiplicative characters of , with ) 

Our basic tool is the following well-known result in algebraic number theory (see 

Berndt et al (1998) or Lidl et al (1997), for instance): 

Theorem 6.12: (Stickelberger`s congruence) Let .  Then, for any 

integer  not divisible by – , where  denotes the Gauss 

sum,  denotes the Teichmueller character and  denotes the -adic weight of the 

integer  after it is reduced modulo – .  Here  denotes the valuation function at a 

prime ideal  lying above  in the number field that contains the underlying Gauss 

sum. 

For more details regarding the above theorem, please refer to Berndt, et al (1998), 

Evans et al (1999) or Arasu and Player (2003) . 

Our next task is to explain a perfect sequence existence condition. 

In the study of group developed designs, one may start with an object and try to 

prove that the group developed design has the required auto-correlation properties.  We 

take the opposite approach in this paper.  Start with an object in Fourier space which 

has the correct auto-correlation properties and try to show that its Fourier inverse has 

coefficients in the required subset. 

Let  be a prime,  a positive integer and let .  Define  by  

                                                                                      (59) 

Let  and let L be the unique index  subgroup of G.  Then 

                                                                                   (60) 

Applying (60),   and Fourier inversion we find 

                                                                             (61) 

Set .  We can clearly remark that 

Remark 6.13:  

Our primary tool in the new constructions of p-ary perfect sequences is given in 

the next theorem: 

Theorem 6.14: The following are equivalent: 

(1)  is a perfect sequence. 



(2) The coefficients of  are p-th roots of unity. 

(3) For all primes above p in  and non-principal characters  of G, 

 

(4) For all non-principal characters  

(5) For all  

Judicious choices of  and  as given in the next three theorems now yield new 

classes of -ary perfect sequences.  The first family works for , the second for 

any odd prime , whereas the last one requires the said prime to be 3. 

Theorem 6.15: Let  and  be an integer.  Also let  be any integer with 

.  Assume that  and  of opposite parity.  Then  is a 

perfect sequence over . 

Remark 6.16: When  and ,  can be shown to be the 

binary Dillon and Dobbertin (2004) sequences.  Kashyap (2005) has proved Theorem 

6.15 independently using similar methods via Stickelberger combinatorics. 

Theorem 6.17: Let p be an odd prime.  Let d be an integer, .  Let  be an 

integer with , or equivalently  is odd.  Then 

 is a perfect sequence over . 

Remark 6.18: It can be shown that odd prime -ary perfect sequences of Dillon 

(2002), Helleseth and Gong (2002), Helleseth, Kumar and Martinsen (2001) arise as 

 of theorem 6.17 for each  with  odd. 

Theorem 6.19: Let  and  be an integer.  Also let  be any integer 

with .  Then 

                      (62) 

If, furthermore,  is odd,  is a 

perfect sequence over  

Remarks 6.20: 

(1) The two ternary perfect sequences  and  of 

Theorem 6.19 project to the same difference set. 

(2) Arasu, Dillon and Player (2010) have shown that these families prove the 

conjectures of Ludkovski and Gong (2001). 

(3) By focusing attention on the trace expansion of the perfect sequence in the last 

family with , Arasu, Dillon and Player (2010) show that it is 

equivalent to the Lin sequence (i.e. , where 

. Thus we obtain: 



Corollary 6.21: The Lin Conjecture (1998) is true. 

Remarks 6.22: 

(1) Arasu, Dillon, Player (2010)) provide the first proof of this very important 

result. 

(2) Arasu, Dillon, Player (2010) do a lot more than what is stated in the above 

theorems.  They also prove the inequivalence and compute the ranks in certain 

cases. 

We end this paper with the following: 

Question: Is there a more direct proof of the Lin Conjecture? 
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