Incidence structures, codes, and Galois geometry

Vladimir D. Tonchev Michigan Technological University tonchev@mtu.edu

The lecture discusses a new invariant for finite incidence structures based on linear codes and Galois geometry, which has both an algebraic and a geometric description, and is motivated by the longstanding Hamada's conjecture about the minimum p-rank of the classical geometric designs. The new invariant was used recently in a joint work of the speaker with Dieter Jungnickel to prove a Hamada type characterization of the classical geometric designs having as blocks the d-subspaces of an n-dimensional projective or affine geometry over a finite field of order q.

MSC2010: 05B05, 11T71, 51E20, 94B27.

Keywords: incidence structure, combinatorial design, finite geometry, *p*-rank, linear code, trace code, Galois closed code, Hamada conjecture.

Section: 14.