Householder's approximants and continued fraction expansion of quadratic irrationals

(Poster)

Vinko Petričević Department of Mathematics, University of Zagreb Bijenička cesta 30, 10000 Zagreb, Croatia vpetrice@math.hr

Let α be a quadratic irrational. It is well known that the continued fraction expansion of α is periodic. We observe Householder's approximant of order m-1 for the equation $(x-\alpha)(x-\alpha')=0$ and $x_0=p_n/q_n$: $R_n^{(m)}=\frac{\alpha(p_n/q_n-\alpha')^m-\alpha'(p_n/q_n-\alpha)^m}{(p_n/q_n-\alpha')^m-(p_n/q_n-\alpha)^m}$. We say that $R_n^{(m)}$ is good approximant if $R_n^{(m)}$ is a convergent of α . When period begins with a_1 , there is a good approximant at the end of the period, and when period is palindromic and has even length ℓ , there is a good approximant in the half of the period. So when $\ell \leq 2$, then every approximant is good, and then it holds $R_n^{(m)} = \frac{p_m(n+1)-1}{q_m(n+1)-1}$ for all $n \geq 0$. We prove that to be a good approximant is the palindromic and the periodic property. Further, we define the numbers $j^{(m)} = j^{(m)}(\alpha, n)$ by $R_n^{(m)} = \frac{p_m(n+1)-1+2j}{q_m(n+1)-1+2j}$ if $R_n^{(m)}$ is a good approximant. We prove that $|j^{(m)}|$ is unbounded by constructing an explicit family of quadratic irrationals, which involves the Fibonacci numbers.

MSC2010: 11A55.

Keywords: Continued fractions, Householder's iterative methods.

Section: Number theory.