Householder's approximants and continued fraction expansion of quadratic irrationals

(Poster)
Vinko Petričević
Department of Mathematics, University of Zagreb
Bijenička cesta 30, 10000 Zagreb, Croatia
vpetrice@math.hr

Let α be a quadratic irrational. It is well known that the continued fraction expansion of α is periodic. We observe Householder's approximant of order $m-1$ for the equation $(x-\alpha)\left(x-\alpha^{\prime}\right)=0$ and $x_{0}=p_{n} / q_{n}: R_{n}^{(m)}=$ $\frac{\alpha\left(p_{n} / q_{n}-\alpha^{\prime}\right)^{m}-\alpha^{\prime}\left(p_{n} / q_{n}-\alpha\right)^{m}}{\left(p_{n} / q_{n}-\alpha^{\prime}\right)^{m}-\left(p_{n} / q_{n}-\alpha\right)^{m}}$. We say that $R_{n}^{(m)}$ is good approximant if $R_{n}^{(m)}$ is a convergent of α. When period begins with a_{1}, there is a good approximant at the end of the period, and when period is palindromic and has even length ℓ, there is a good approximant in the half of the period. So when $\ell \leq 2$, then every approximant is good, and then it holds $R_{n}^{(m)}=\frac{p_{m(n+1)-1}}{q_{m(n+1)-1}}$ for all $n \geq 0$. We prove that to be a good approximant is the palindromic and the periodic property. Further, we define the numbers $j^{(m)}=j^{(m)}(\alpha, n)$ by $R_{n}^{(m)}=\frac{p_{m(n+1)-1+2 j}}{q_{m(n+1)-1+2 j}}$ if $R_{n}^{(m)}$ is a good approximant. We prove that $\left|j^{(m)}\right|$ is unbounded by constructing an explicit family of quadratic irrationals, which involves the Fibonacci numbers.

MSC2010: 11A55.

Keywords: Continued fractions, Householder's iterative methods.
Section: Number theory.

