Operator inequalities involving real convex functions

(Talk)

Jadranka Mićić
University of Zagreb, Faculty of Mechanical Engineering and Naval
Architecture
jmicic@fsb.hr

(joint work with Mohammad Sal Moslehian and Mohsen Kian)

We establish a general convexity operator inequality involving real convex functions. Some special cases, examples and a variety of its consequences are also given. In particular, we prove that the inequality $f(A)+f(B) \leq f(A+B)$ holds for a real convex function f and positive operators A, B with $A, B \leq M I \leq$ $A+B$ for some scalar $M>0$. Also, we show that if f is a real convex function and A, B, C, D are self-adjoint operators with $A \leq m I \leq C, D \leq M I \leq B$ for some scalars $m \leq M$, then $f(C)+f(D) \leq f(A)+f(B)$.

MSC2010: 47A63, 47A64.
Keywords: self-adjoint operator, positive linear mapping, convex function, Jensen's operator inequality.

Section: 9.

