Lapidus zeta functions of fractal sets and applications

 (Talk)Darko Žubrinić
University of Zagreb
darko.zubrinic@fer.hr

(joint work with Michel L. Lapidus, University of California, Riverside, and Goran Radunović, University of Zagreb)

In 2009. Michel L. Lapidus has introduced a new class of zeta functions associated with bounded nonempty sets A in \mathbb{R}^{N}, defined by

$$
\zeta_{A}(s)=\int_{A_{\delta}} d(x, A)^{s-N} d x
$$

where s is a complex number, A_{δ} is the δ-neighbourhood of A, and $d(x, A)$ is the Euclidean distance from x to A. These zeta functions can serve as a bridge between the geometric theory of fractal sets and complex analyis. A special case are the classical Riemann zeta function and the zeta function of fractal strings. The abscissa of convergence of the Lapidus zeta function of A is equal to the upper box (or Minkowski) dimension of A. Furthemore, if A is Minkowski nondegenerate, then the upper and lower d-dimensional Minkowski contents of A are closely related to the value of the residue of the zeta function of A at $s=d$. We illustrate the properties of zeta functions of fractal sets in the case of generalized Cantor sets and geometric chirps. This is a continuation of previous studies of M. L. Lapidus and his collaborators on fractal strings and their generalizations over the past two decades.

References

[1] Michel L. Lapidus M. L., Machiel van Frankenhuysen M., Fractality, Complex Dimensions, and Zeta Functions, Geometry and Spectra of Fractal Strings, Springer Monographs in Mathematics, in press.
[2] Michel L. Lapidus, Goran Radunović, Darko Žubrinić, A zeta function associated with fractal sets in Euclidean spaces, article in preparation.

MSC2010: 28A12 30D30 .
Keywords: zeta functions, fractal sets, box dimension, Minkowski contents, residues.

Section: 8.

