Generalizations of Ostrowski inequality involving real Borel measures
 (Talk)

Ambroz Čivljak

RIT/American College of Management and Technology -
Dubrovnik - Croatia
acivljak@acmt.hr

Let $M[a, b]$ be the Banach space of all real Borel measures on $[a, b]$ with the total variation norm. For $\mu \in M[a, b]$ define function $\check{\mu}_{n}:[a, b] \rightarrow \mathbf{R}, n \geq 1$, by

$$
\check{\mu}_{n}(t)=\frac{1}{(n-1)!} \int_{[a, t]}(t-s)^{n-1} d \mu(s) .
$$

A sequence of functions $P_{n}:[a, b] \rightarrow \mathbb{R}, n \geq 1$, is called a μ-harmonic sequence of functions on $[a, b]$ if

$$
P_{1}(t)=c+\check{\mu}_{1}(t), a \leq t \leq b,
$$

for some $c \in \mathbb{R}$, and

$$
P_{n+1}(t)=P_{n+1}(a)+\int_{a}^{t} P_{n}(s) d s, a \leq t \leq b, n \geq 1
$$

Define function $K_{n}:[a, b] \times[a, b] \rightarrow \mathbb{R}, n \geq 1$, by

$$
K_{n}(x, t)= \begin{cases}P_{n}(b-x+t), & a \leq t \leq x \\ P_{n}(a-x+t), & x<t \leq b\end{cases}
$$

for $a \leq x<b$, while for $x=b$

$$
K_{n}(b, t)=\left\{\begin{array}{cc}
P_{n}(t), & a \leq t<b \\
P_{n}(a), & t=b
\end{array} .\right.
$$

The following theorem is the key result in this talk.
Theorem. For $\mu \in M[a, b]$ let $\left(P_{n}, n \geq 1\right)$ be a μ-harmonic sequence of functions on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ such that $f^{(n-1)}$ is a continuous function of bounded variation for some $n \geq 1$. Then we have

$$
\begin{equation*}
\int_{[a, b]} f_{x}(t) d \mu(t)-\mu(\{a\}) f(x)+S_{n}(x)=R_{n}(x), \tag{1}
\end{equation*}
$$

for every $x \in[a, b]$, where

$$
f_{x}(t)= \begin{cases}f(x-a+t), & a \leq t \leq a+b-x \\ f(x-b+t), & a+b-x<t \leq b\end{cases}
$$

$$
\begin{aligned}
S_{n}(x)= & \sum_{k=1}^{n-1}(-1)^{k} P_{k}(a+b-x)\left[f^{(k-1)}(b)-f^{(k-1)}(a)\right] \\
& +\sum_{k=1}^{n}(-1)^{k} f^{(k-1)}(x)\left[P_{k}(b)-P_{k}(a)\right]
\end{aligned}
$$

and

$$
R_{n}(x)=(-1)^{n} \int_{[a, b]}\left[K_{n}(x, t)-K_{n}(x, a)\right] d f^{(n-1)}(t) .
$$

Using Euler identity (1) we prove some of the Ostrowski type inequalities for functions of various classes and different types of measures. Among other results, we generalize some results of [1] as well as the recent results of [2].

References:

[1] Lj. Dedić, M. Matić, J. Pečarić, and A. Vukelić, On generalizations of Ostrowski Inequality via Euler Harmonic Identities, J. of Inequal. \& Appl., 7, 6 (2002), 787-805.
[2] Lj. Dedić, M. Matić, J. Pečarić and A. Aglić Aljinović, On weighted Euler harmonic identities with applications, Math. Inequal. \& Appl., 8 (2), (2005), 237-257.

MSC2010: 26D15, 26D20, 26D99.
Keywords: Ostrowski inequality, harmonic sequences, generalized Euler identities, Borel measures.

Section: 8.

