On refined Hardy-type inequalities with fractional integrals and fractional derivatives

(Talk)

Kristina Krulić Himmelreich Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia kkrulic@ttf.hr

(joint work with Sajid Iqbal and Josip Pečarić)

Let $[a, b], (-\infty < a < b < \infty)$ be a finite interval on real axis \mathbb{R} . The Riemann-Liouville fractional integrals $I_{a^+}^{\alpha} f$ and $I_{b^-}^{\alpha} f$ of order $\alpha > 0$ are defined by

$$I_{a^{+}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} f(y)(x-y)^{\alpha-1} dy, \quad (x > a)$$

and

$$I_{b^{-}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)}\int_{x}^{b}f(y)(y-x)^{\alpha-1}dy, \quad (x < b)$$

respectively. Here $\Gamma(\alpha)$ is the Gamma function, i.e. $\Gamma(\alpha) = \int_0^\infty e^t t^{\alpha-1} dt$. G. H. Hardy proved that fractional integral operators are bounded in $L_p(a, b), -\infty < a < b < \infty, \ 1 \le p \le \infty$, that is

$$\|I_{a^+}^{\alpha}f\|_p \le K\|f\|_p, \quad \|I_{b^-}^{\alpha}f\|_p \le K\|f\|_p \tag{1}$$

where

$$K = \frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)}.$$

Inequality (1) refers to as inequality of G. H. Hardy.

The aim of this talk is to present new more general Hardy-type inequalities for different kinds of fractional integrals and fractional derivatives like Riemann-Liouville fractional integrals, Caputo fractional derivative, fractional integral of a function with respect to an increasing function, Erdelyi-Kóber fractional integrals and Hadamard-type fractional integrals.

MSC2010: 26D15, 26D10.

Keywords: Hardy-type inequalities, convex function, kernel, fractional derivative, fractional integrals.

Section: Real and Complex Analysis .