Geometry of pentagonal quasigroups

(Talk)

Stipe Vidak
Department of Mathematics, University of Zagreb
stipe.vidak@gmail.com

Pentagonal quasigroups are idempotent medial quasigroups satisfying the additional identity of pentagonality, $(a b \cdot a) b \cdot a=b$. Basic example is $C(q)=(\mathbb{C}, *)$, where $*$ is binary operation on \mathbb{C} defined by $a * b=(1-q) a+q b$ for $a, b \in \mathbb{C}$, and q is a solution of the equation $q^{4}-3 q^{3}+4 q^{2}-2 q+1=0$. Using this example as motivation, some geometrical concepts, such as parallelogram, midpoint of a segment, regular pentagon and regular decagon, are defined in a general pentagonal quasigroup. These concepts and their mutual relations are studied and presented in $C(q)$ and in some finite pentagonal quasigroups of order 5 and 11. Using only algebraic identities which hold in pentagonal quasigroups many generalizations of theorems of the Euclidean plane can be proved in a general pentagonal quasigroup.

MSC2010: 20N05, 51E99, 05B15.
Keywords: medial quasigroup, parallelogram, midpoint, regular pentagon, regular decagon.

Section: Geometry and Differential Geometry.

