On Classification of Conic Sections in the Pseudo-Euclidean Plane

(Talk)
Marija Šimić Horvath
Faculty of Architecture, University of Zagreb, Croatia
marija.simic@arhitekt.hr

(joint work with Jelena Beban-Brkić, Faculty of Geodesy, University of Zagreb, Croatia)

A pseudo-Euclidean plane $P E_{2}(\mathbb{R})$ is a real affine plane where a metric is induced by an absolute figure $\left(\omega, \Omega_{1}, \Omega_{2}\right)$ consisting of the line ω at infinity and two different real points $\Omega_{1}, \Omega_{2} \in \omega$.
The aim of our work is a complete classification of the second order curves in $P E_{2}(\mathbb{R})$. The classification has been made earlier in the paper of $\mathrm{N} . \mathrm{V}$. Reveruk (Krivie vtorogo porjadka v psevdoevklidovoi geometrii, Uchenye zapiski MPI 253 (1969) 160-177.), but it showed to be incomplete and not possible to cite and use in further studies of properties of conics, pencil of conics, and of quadratic forms in pseudo-Euclidean spaces.
Our approach is based on linear algebra. Notions such as a pseudo-orthogonal matrix, pseudo-Euclidean values of matrix, diagonalization of a matrix in a pseudo-Euclidean way are introduced. In addition, conics are divided in families and by types, giving both of them geometrical meaning. All this allows to determine the invariants of a conic with respect to the group of motions in $P E_{2}(\mathbb{R})$ making it possible to determine a conic without reducing its equation to canonical form.

MSC2010: 51A05, 51N25.
Keywords: pseudo-Euclidean plane $P E_{2}(\mathbb{R})$, conic section.
Section: 5.

