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Finding explicit equations for the area or circumradius of polygons inscribed in
a circle in terms of side lengths is a classical subject (cf.[1]). For triangle / cyclic
quadrilaterals we have famous Heron / Brahmagupta formulae. In 1994. D.P.
Robbins found a minimal area equations for cyclic pentagons/hexagons by a
method of undetermined coefficients(cf.[3]). This method could hardly be used
for heptagons due to computational complexity (143307 equations). In [4], by
using covariants of binary quintics, a concise minimal heptagon/octagon area
equation was obtained as a fraction of two resultants which in expanded form has
almost one milion terms. It is not clear if this approach could be effectively used
for cyclic polygons with nine or more sides . In [6], by using Wiener-Hopf factor-
ization approach , we have obtained a very explicit minimal heptagon/octagon
circumradius equation in Pellian form with coefficients up to four digits. A
nonminimal area equation is also obtainable by this method. Both methods are
somehow external. But,based on our new intermediate Brahmagupta formula,
we have succeded also in finding an intrinsic proof of the Robbins formula for the
area (and also for circumradius and area times circumradius) of cyclic hexagon
based on an intricate direct elimination of diagonals (the case of pentagon was
much easier cf. [5]).We also get a simple(st) system of equations for the area
and area times circumradius of cyclic heptagons /octagons. It seems remarkable
that our approach, with a help of Groebner basis techniques leads to minimal
equations (for any concrete instances we have tested) ,what is not the case with
iterated resultants approach.
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