On Parallel Surfaces in $\widetilde{\mathbf{sL}(2,\mathbb{R})}$ geometry

(Talk)

Zlatko Erjavec University of Zagreb, Faculty of Organization and Informatics, Pavlinska 2, HR-42000 Varaždin, Croatia zlatko.erjavec@foi.hr

 $SL(2,\mathbb{R})$ geometry is one of the eight homogeneous Thurston 3-geometries

 E^3 , S^3 , H^3 , $S^2 \times \mathbb{R}$, $H^2 \times \mathbb{R}$, $\widetilde{SL(2,\mathbb{R})}$, Nil, Sol.

In 1997 Emil Molnár proposed ([2]) a projective spherical model as unified geometrical model of homogeneous geometries. In the same paper he introduced the hyperboloid model of $\widetilde{SL(2,\mathbb{R})}$ geometry which is in more detail described in [3] and [4], where geodesics and minimal surfaces are determined.

Although parallel surfaces in real special linear group $SL(2,\mathbb{R})$ are already studied in [1], we examine parallel surfaces using the hyperboloid model of $\widetilde{SL(2,\mathbb{R})}$ geometry.

References

- M. Belkhelfa, F. Dillen, J. Inoguchi Parallel surfaces in the rael special linear group SL(2, ℝ), Bull. Austral. Math. Soc., Vol. 65 (2002), 183-189.
- [2] E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge Algebra Geom. 38 (2) (1997), 261-288.
- [3] B. Divjak, Z. Erjavec, B. Szabolcs, B. Szilágyi, Geodesics and geodesic spheres in SL(2, ℝ) geometry, Math. Commun., Vol. 14 (2) (2009), 413-424.
- [4] Z. Erjavec, Minimal surfaces in $\widetilde{SL(2,\mathbb{R})}$ geometry, submitted to Stud. Scie. Math. Hung.

MSC2010: 53A40.

Keywords: $SL(2,\mathbb{R})$ geometry, parallel surfaces.

Section: 5.