On the minimal index and indices of the form $2^{a} 3^{b}$ in a parametric family of bicyclic biquadratic fields

(Talk)

Borka Jadrijević
Department of Mathematics, University of Split, Teslina 12, 21000
Split, Croatia
borka@pmfst.hr

Let $c \geq 3$ be integer such that $c, c-2, c+4$ are square-free integers relatively prime in pairs and let $L_{c}=\mathbb{Q}(\sqrt{(c-2) c}, \sqrt{(c+4) c})$ be a family of bicyclic biquadratic fields. We find minimal index $\mu\left(L_{c}\right)$ and determine all elements with minimal index in L_{c}.

Furthermore, we give some results concerning elements α with index of the form $\mu(\alpha)=2^{a} 3^{b}$. Precisely, we show that for every integer $K \geq 12$ if $c \geq K-1$ and if α is an element with index $\mu(\alpha)=2^{a} 3^{b} \leq K$, then α is an element with minimal index $\mu(\alpha)=\mu\left(L_{c}\right)=12$. We also show that for every integer $C_{0} \geq 3$ we can find effectively computable integers $M\left(C_{0}\right)$ and $N\left(C_{0}\right)$ such that in case $c \leq C_{0}$ there are no elements α with index of the form $\mu(\alpha)=2^{a} 3^{b}$, where $a>M\left(C_{0}\right)$ or $b>N\left(C_{0}\right)$.

MSC2010: 11D57, 11A55, 11B37, 11J68, 11J86, 11Y50.
Keywords: index form equations, minimal index, bicyclic biquadratic fields, simultaneous Pellian equations.

Section: 3. Number Theory.

