
COMPUTATION OF CONSTANTS IN
MULTIPARAMETRIC ALGEBRAS OF
NONCOMMUTATIVE POLYNOMIALS

(Talk)

Milena Sosic
Department of Mathematics, University of Rijeka

msosic@math.uniri.hr

Let N0 = {0, 1, . . .} be the set of nonnegative integers and let N = {i1, . . . , iN}
be a fixed subset of N0. Then we denote by B = BN = C 〈ei1 , . . . , eiN

〉 the
free unital associative C-algebra with N generators {ei}i∈N , each of degree
one. We can think of B as an algebra of noncommutative polynomials in N

noncommuting variables ei1 , . . . , eiN
.

We equip B with a multiparametric qij -differential structure given by N linear
operators ∂i : B → B, i ∈ N that act as twisted derivations on B:
∂i(1) = 0, ∂i(ej) = δij , ∂i(ejx) = δijx + qijej∂i(x) for all x ∈ B, i, j ∈ N
(qij are complex numbers).
The algebra B is naturally graded by total degree B =

⊕
n≥0

Bn, where B0 = C

and Bn consists of all homogeneous noncommuting polynomials of total degree
n in variables ei1 , . . . , eiN

. More generally we also have a finer decomposition
of B into multigraded components (= weight subspaces)

B =
⊕

n≥0, l1≤···≤ln, lj∈N

Bl1...ln ,

where each weight subspace BQ = Bl1...ln , corresponds to a multiset Q = (l1 . . . ln),
is given by

BQ = spanC

{
ej1...jn

:= ej1 · · · ejn
| j1 . . . jn ∈ Q̂

}
.

Here Q̂ = SnQ = {σ(l1 . . . ln) | σ ∈ Sn} denotes the set of all rearrangements of

the sequence l1, . . . , ln (i.e Q̂ is the set of all distinct permutations of the multiset

Q). Thus dimBQ =
∣∣∣Q̂

∣∣∣.
Of particular interest in algebra B are elements called constants which satisfy
∂iC = 0 for every i ∈ N . Let C denotes the space of all constants in algebra B
and similarly let CQ denotes the space of all constants in BQ. Then the main
problem of describing the space C can be reduced to describing the space CQ.
Here we shall give the explicit formulas for nontrivial (basic) constants in BQ

up to total degree equal to four.
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